Curriculum vitae of Dr. Giorgia Fosser

Informazioni personali

Nome: Giorgia Fosser

Email di lavoro: giorgia.fosser@iusspavia.it

Curriculum overview

Titoli di studio	. 2
Dottore di ricerca	. 2
Master in Water Resources Management	. 2
Laurea in ingegneria civile	. 2
Esperienze lavorative	. 3
Professore associato in FIS06	. 3
RTDB in FIS06	. 3
Assegnista di ricerca	. 3
Ricercatore all'estero	. 3
Ricercatore all'estero	. 4
Borsista	. 4
Progetti finanziati	. 4
CoPe	
RESILIENCE	. 5
Attività didattica	. 5
From global to convection-permitting models	. 5
Hands-on climate model evaluation	.6
Model jungle: understanding models to understand weather forecast and climate change	. 6
Publicazioni	

Titoli di studio

Dottore di ricerca

Periodo: 09/2010-11/2013

<u>Istituzione</u>: Karlsruhe Institute of Technology (KIT), Karlsruhe, Germania

<u>Titolo della tesi</u>: Precipitation statistics from regional climate model at resolution relevant for

soil erosion.

Attività svolte: Co-responsabile delle decisioni scientifiche riguardanti il progetto KLIWA intitolato "Sviluppo di un approccio per l'accoppiamento dei modelli climatici ad alta risoluzione con modelli per la valutazione dell'erosione del suolo dovuto a precipitazioni intense nel contesto del cambiamento climatico" (titolo ufficiale "Bodenabtrag durch Wassererosion in Folge von Klimaveränderungen"), finanziato dal ministero dell'ambiente del Baden-Württemberg (Landesanstalt für Umwelt Baden-Wüttemberg, LUBW); co-responsabile dell'interazioni con gli altri istituti coinvolti e della presentazione dello stato di avanzamento del lavoro nell'ambito dei modelli ad alta risoluzione al ministero dell'ambiente del Baden-Württemberg. In particolare:

- a) Responsabile della creazione di simulazioni climatologiche per il Baden-Württemberg (Germania) col modello COSMO-CLM ad alta risoluzione (convection-permitting scale) per 30 anni nel passato e nel futuro recente.
- b) Responsabile dell'analisi della sensitività del modello convection-permitting alla dimensione e posizione del dominio così come al settaggio delle componente fisiche.
- c) Responsabile dell'analisi dei benefici dell'alta risoluzione nella rappresentazione dei fenomeni convettivi in confronto a modelli a minor risoluzione dopo la validazione basata sulle osservazioni.
- d) Responsabile dello studio delle proiezioni climatologiche a breve termine, da modelli ad alta e bassa risoluzione spaziale, con attenzione particolare agli eventi estremi di precipitazione.
- e) Supervisore dello studente di master, Manuel Antonetti, per la sua tesi intitolata "Analysis of Climate Change Impact on Runoff and Soil Erosion in a Small Rural Catchment" presso Institute of Water and River Basin Management, Section Hydrology, Karlsruhe Institute of Technology (Germania). La tesi verteva sui vantaggi e limitazioni dell'utilizzo dei dati da modello atmosferico ad alta risoluzione come input per il modello LISEM per l'erosione del suolo.

Voto conseguito: good (cum laude)

Master in Water Resources Management

Periodo: 10/2006-04/2008

Istituzione: UNESCO-IHE, Institute for Water Education, Delft, Paesi Bassi

<u>Titolo della tesi</u>: How is the Indian Government dealing with the climate change issue in terms of sectoral policies (namely agriculture, water resources and energy policies)?

<u>Descrizione</u> La tesi analizzava come il governo indiano stava affrontando la questione del cambiamento climatico in termini di politiche settoriali (in particolare agricoltura, risorse idriche e politiche energetiche) per fornire indicazioni sui possibili fattori limitanti nelle strategie di contrasto ai cambiamenti climatici.

Voto conseguito: 78/100

Laurea in ingegneria civile indirizzo idraulica (vecchio ordinamento)

Curriculum vitae of Dr. Giorgia Fosser

Periodo: 10/1998-03/2006

Istituzione: Università degli studi di Padova, Padova, Italia

Titolo della tesi: L'influenza delle oscillazioni climatiche sul fenomeno delle "acqua alta" a

Venezia

<u>Descrizione</u>: La tesi analizzava l'influenza delle teleconnessioni sulle acque alte di Venezia ed è stata svolta presso Department of Geological Sciences and School of Computational Science,

alla Florida State University (USA).

Voto conseguito: 100/110

Esperienze lavorative

Professore associato in FIS06

Settore concorsuale 02/C1 (Astronomia, astrofisica, fisica della terra e dei pianeti)

Periodo: 01/03/2025- on-going

Nome istituzione: I.U.S.S. - Istituto Universitario di Studi Superiori, Pavia, Italia

RTDB in FIS06

Periodo: 17/10/2022- 28/02/2025

Nome istituzione: I.U.S.S. - Istituto Universitario di Studi Superiori, Pavia, Italia

Assegnista di ricerca

Periodo: 01/03/2020- 16/10/2022

Nome istituzione: I.U.S.S. - Istituto Universitario di Studi Superiori, Pavia, Italia

<u>Argomento di ricerca</u>: "Approccio olistico per la valutazione del rischio di calamità naturali e resilienza di infrastrutture critiche" e in particolare, responsabile della:

- a) Validazione di diversi modelli ad alta risoluzione spaziale (convection-permitting models) sull'Italia soprattutto in termini di estremi di precipitazioni.
- b) Analisi dei cambiamenti climatici sull'Italia, della loro significatività e delle incertezza relative ad essi usando dati da modelli climatici.
- c) Analisi dell'impatto degli eventi di precipitazione sul rischio di alluvioni e sulla produttività agricola nel futuro.

Ricercatore all'estero (Senior scientist) con contratto a tempo indeterminato

Periodo: 07/09/2015-29/02/2020

Nome istituzione: Met Office Hadley Center, Exeter, Regno Unito

<u>Attività svolta:</u> Co-responsabile del work package "Convection-permitting model projection" nel progetto nazionale UKCP (UK Climate Projections) che aveva lo scopo di informare il governo sui cambiamenti climatici che coinvolgeranno il Regno Unito alla fine del XXI secolo. In particolare:

a) Responsabile delle decisioni scientifiche legate alla creazione del primo ensemble di simulazioni climatologiche ad alta risoluzione (convection-permitting) al mondo con il modello UKMO. Il settaggio iniziale dell'ensemble ha richiesto una serie di test e il confronto con gli esperti specifichi di ogni area non solo per le componenti strettamente

- meteorologiche, ma anche per le caratteristiche idrologiche del suolo, lo stato vegetativo futuro e gli aerosol (e i loro effetti diretti e indiretti) da inserire nel modello.
- b) Responsabile della validazione del modello ad alta risoluzione per il campo delle precipitazioni e dei suoi estremi usando a confronto dati di stazioni e simulazioni basate su reanalisi.
- c) Responsabile dell'analisi delle proiezioni future con simulazioni alta risoluzione e confronto con modelli a minore risoluzione spaziale con valutazione delle incertezze sulle proiezioni climatologiche a fine secolo delle diverse risoluzioni spaziali.
- d) Co-responsabile della stesura del report scientifico finale, revisionato e approvato da una commissione esterna di esperti presieduta da prof. Sir Brian Hoskins, che riassume i risultati principali del work package 3 che verranno usati nel prossimo UK Risk Assessment (RA 2022). Link al report:

https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP-Convection-permitting-model-projections-report.pdf

Ricercatore all'estero

Periodo: 01/02/2014-24/08/2015

Nome istituzione: Centre National De La Recherche Scientifique (CNRS), Tolosa, Francia

Attività svolta: Co-responsabile del work package "Improvement of the representation of precipitation extreme events over land" nel progetto REMEMBER finanziato da Agence Nationale de la Recherche (ANR, Francia) per la comprensione e modellizzazione del sistema climatico regionale per la prevenzione dei rischi idrometeorologici nel Mediterraneo in un contesto di cambiamento globale. In particolare:

- a) Responsabile della valutazione delle performance del modello climatico regionale ALADIN nella rappresentazione degli eventi estremi di precipitazioni confronto a dati di osservazione ad alta risoluzione e ad eventi specifici delle campagne di misura HyMeX/MED-CORDEX.
- b) Responsabile dello studio dei processi atmosferici responsabili degli eventi estremi soprattutto nell'area sud-orientale della Francia.
- c) Responsabile dello studio di sensitività dei modelli alla risoluzione orizzontale e verticale, così come ai diversi pacchetti fisici disponibili, per la rappresentazione di eventi estremi.

Borsista finanziata dal programma GRACE dal Karlsruhe Institute of Technology (KIT), Germania

Periodo: 01/11/2013-31/01/2014

<u>Nome istituzione ospitante:</u> Météo France & Centre National De La Recherche Scientifique (CNRS), Tolosa, Francia

<u>Attività svolta</u>: Individuazione di eventi estremi di precipitazione sull'area sud-est della Francia da modello e da stazione da investigare nel progetto REMEBER.

Progetti finanziati

CoPe "Convection-permitting" finanziato da Progetto RETURN: J33C22002840002

Periodo: 01/03/2024 - on-going

Scopo del progetto: Il progetto Cope si prefigge di creare un dataset di simulazioni convectionpermitting (CPM) sul territorio nazionale, sia per il passato che per il futuro, validate e affidabili che possano quindi fungere da base per lo sviluppo di indici di impatto del clima e del cambiamento climatico per lo sviluppo di strategie di adattamento efficaci. In particolare, l'ensemble CPM rimappato su una griglia regolare sarà corretto, sia per gli errori sistematici dei modelli che per la distorsione aggiuntiva dovuta allo specifico GCM forzante, utilizzando tecniche di bias-correction standard così come approcci più evoluti basati sul machine learnig. Inoltre CoPe si propone non solo di indagare il segnale di cambiamento climatico nel ensemble CPM, sia su base giornaliera che oraria, ma soprattutto di stimare le incertezze ad esso collegate distinguendo tra l'incertezza dovuta al modello utilizzato e quella derivante dalla variabilità naturale.

<u>Caratteristiche progetto</u>: Fondi richiesti €200.000, durata progetto 1 anni, 2 postdoc per 1 anni ciascuno e una borsa di ricerca per 1 anno.

Ruolo della candidata: PI del progetto e responsabile del work package WP1: "Creazione dataset di simulazioni CPM affidabili per precipitazione e vento" e del Task 2.2 "Analisi dell'incertezza del cambiamento climatico".

RESILIENCE, "Extreme Storms in the Italian North-East: frequency, impacts and projected changes" finanziato da CARIPARO "Ricerca Scientifica di Eccellenza 2021"

Periodo: 01/02/2021- on-going

Scopo del progetto: Il progetto RESILIENCE intende sviluppare una metodologia integrata per valutare gli impatti del cambiamento climatico sul regime delle precipitazioni e dei venti intensi così come sui fenomeni di piena improvvisa in ambiente montano e sul rischio forestale. Nel progetto, le analisi climatiche ad alta risoluzione sono utilizzate per quantificare le variazioni future nel regime delle piene temibili in bacini montani e nel regime dei venti intensi, al fine di valutare i futuri danni forestali. Il progetto punta a cambiare la nostra concezione degli eventi idrologici estremi in un clima che cambia, sviluppando nuove strategie per aumentare la resilienza delle comunità e del territorio a tali eventi, con applicazioni a casi reali di spicco nel territorio del Nord-est italiano.

Caratteristiche progetto: Il progetto prevede la collaborazione dei seguenti istituti: Università di Padova, Dipartimento Territorio e Sistemi Agro-Forestali (TESAF), Università di Padova, Dipartimento di Ingegneria Civile, Edile e Ambientale (DICEA), Università di Padova, Dipartimento di Scienze Statistiche (DSS), CNR ISAC, Bologna, Istituto Universitario di Studi Superiori (IUSS), Pavia. PI del progetto: prof. Borga, Università di Padova, Dipartimento Territorio e Sistemi Agro-Forestali (TESAF). Fondi richiesti €349.600, durata progetto 3 anni, 5 postdoc per 2 anni ciascuno.

Ruolo della candidata: co-ideatrice del progetto e responsabile dei work packages (WP): WP2.1 "Validation and bias correction of precipitation and wind outputs from convection-permitting and regional climate models" e WP2.3 "Analysis of the climate change signal and related uncertainties".

Attività didattica

From global to convection-permitting models

Il corso si rivolge a dottorandi del percorso di dottorato IUSS "Understanding and Managing Extremes" (UME) e del dottorato nazionale "Suistainable Developmente and Climate change" (SDC). Il corso presenta i modelli climatici dalla scala globale all'alta risoluzione, spiegando il loro funzionamento ed evidenziando i vantaggi/svantaggi delle diverse risoluzioni. Durata del corso: 20 ore. Ogni anno da febbraio 2021.

Hands-on climate model evaluation

Il corso si rivolge a dottorandi del percorso di dottorato IUSS "Understanding and Managing Extremes" (UME) e del dottorato nazionale "Sustainable Development and Climate change" (SDC). Il corso offre una panoramica su i più comuni metodi di validazione dei modelli climatici e a tal scopo presenta alcuni degli strumenti abitualmente utilizzati, come i comandi cdo, neview e linguaggio R. Agli studenti viene richiesto di applicare alcune delle metriche presentate, come distribuzioni di probabilità, probabilità congiunta o vincoli emergenti, sui dati climatici da modello sull'Europa per il confronto con le osservazioni o per investigare il cambiamento climatico. Durata del corso: 20 ore. Ogni anno da maggio 2023.

Model jungle: understanding models to understand weather forecast and climate change

Il seminario si rivolge agli studenti dei corsi ordinari dello IUSS di Pavia del 5° anno. Il seminario presenta gli strumenti a nostra disposizione per le previsioni meteorologiche e per lo studio del clima e del cambiamento climatico. In questo contesto, vengono presentati i vari modelli disponibili spiegando brevemente come funzionano e analizzando le differenze tra gli uni e gli altri. In particolare, il seminario chiarisce vantaggi e svantaggi delle diverse risoluzioni spaziali e come scegliere lo strumento più adatto a seconda dello scopo della ricerca.

Durata del seminario: 10 ore. Da marzo 2025.

Publicazioni

Vohnicky P., E. Dallan, F. Marra, G. **Fosser**, M. Borga (2025): Future precipitation extremes: differential changes from point to catchment scale revealed by a convection-permitting model ensemble, Journal of Hydrology, doi: 10.1016/j.jhydrol.2025.133822.

Chericoni M, **Fosser** G., Flaounas E., Gaetani M. and Anav A.(2025): Unravelling drivers of the future Mediterranean precipitation paradox during cyclones, npj Clim Atmos Sci, doi: 10.1038/s41612-025-01121-w.

Chericoni M, **Fosser** G., Flaounas E., Sannino G. and Anav A.(2025): Extreme Mediterranean cyclones and associated variables in an atmosphere-only vs an ocean-coupled regional model, Weather and Climate Dynamics, doi:10.5194/wcd-6-627-2025.

Correa-Sánchez, N., E. Dallan, E., F. Marra, G. **Fosser**, and M. Borga (2025): Orographic control on bias and uncertainty in extreme sub-daily precipitation simulations from a convection-permitting ensemble, Journal of Hydrology, doi: 10.1016/j.jhydrol.2025.133324.

Lambert F.H., Allan R., Behrangi A., Byrne M., Ceppi P., Chadwick R., Durack P., Fosser G., Fowler H., Greve P., Lee T., Mutton H., O'Gorman P., Osborne J., Pendergrass A., Reager J., Stier P., Swann A., Todd A., Vicente-Serrano S.M., Stephens G., (2025): Changes in the regional water cycle and their impact on societies, WIREs Climate Change, doi: 10.1002/wcc.70005.

Hamitouche, M., G.**Fosser**, A.Anav, C.He, T-S. Lin, (2025): Impact of Runoff Schemes on Global Flow Discharge: A Comprehensive Analysis Using the Noah-MP and CaMa-Flood Models, HESS, doi:10.5194/hess-29-1221-2025

- Massano, L. T., G. **Fosser**, M. Gaetani, and C. Caillaud (2024): Using a convection-permitting climate model to assess wine grape productivity: two case studies in Italy. Nat. Hazards Earth Syst. Sci., 24, 4293–4315, doi:10.5194/nhess-24-4293-2024.
- Dallan, E., F. Marra, G. **Fosser**, M. Marani, and M. Borga (2024): Dynamical Factors Heavily Modulate the Future Increase of Sub-Daily Extreme Precipitation in the Alpine-Mediterranean Region. Earth's Futur., 12, 1–16, doi:10.1029/2024EF005185.
- Dallan, E., M. Borga, G. **Fosser**, A. Canale, B. Roghani, M. Marani, and F. Marra, (2024): A Method to Assess and Explain Changes in Sub-Daily Precipitation Return Levels From Convection-Permitting Simulations. Water Resour. Res., 60,doi:10.1029/2023WR035969.
- **Fosser**, G., Gaetani, Kendon, E. J., M., Adinolfi, M., Ban, N., Belušić, D., Caillaud, C., Cardoso, R. M., Coppola, E., Demory, M.-E., De Vries, H., Dobler, A., Feldmann, H., Görgen, K., Lenderink, G., Pichelli, E., Schär, C., Soares, P. M. M., Somot, S., and Tölle, M. H.: Convection-permitting climate models offer more certain extreme rainfall projections (2024), NPJ Climate and atmospheric science. doi: 10.1038/s41612-024-00600-w
- Dallan, E., B. Roghani, G. **Fosser**, A. Canale, M. Marani, M. Borga and F. Marra: Assessment of future changes in sub-daily precipitation return levels over a complex- orography area from a convection-permitting climate model (2023), submitted at Water Resource Research.
- Massano, LT., G. **Fosser**, M. Gaetani, and B. Bois: Assessment of Climate Impact on Grape Productivity: A New Application for Bioclimatic Indices in Italy (2023), Sci Total Environ, DOI:10.1016/j.scitotenv.2023.167134
- Halladay K., R. Kahana, B. Johnson, C. Still, G. **Fosser**, L. Alves (2023): Convection-permitting climate simulations for South America with the Met Office Unified Model, climate dynamics (2023), doi:10.1007/s00382-023-06853-0
- Dallan, E., Marra, F., **Fosser, G.**, Marani, M., Formetta, G., Schär, C., and Borga, M. (2023): How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?, Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, 2023
- Fowler H.J., H. Ali, R.P. Allan, N. Ban, R. Barbero, P. Berg, S. Blenkinsop, N. Senol Cabi, S. Chan, M. Dale, R.J.H. Dunn, M. Ekström, J.P. Evans, **G. Fosser**, B. Golding, S.B. Guerreiro, G.C. Hegerl, A. Kahraman, E.J. Kendon, G. Lenderink, E. Lewis, X. Li, P.A. O'Gorman, H.G. Orr, K.L. Peat, A.F. Prein, D. Pritchard, C. Schär, A. Sharma, P.A. Stott, R. Villalobos-Herrera, G. Villarini, C. Wasko, M.F. Wehner, S. Westra, A. Whitford (2021): Towards advancing scientific knowledge of climate change impacts on short-duration rainfall extremes. Phil Trans Roy Soc A, https://doi.org/10.1098/rsta.2019.0542
- Chan S., E.J. Kendon, S. Berthou, G. **Fosser**, E. Lewis, H.J. Fowler (2020): Europe-wide climate change projections at convection permitting scale with the Unified Model. Climate Dynamics. 55, 409–428. doi: 10.1007/s00382-020-05192-8

- Kendon E.J., N. Roberts; G. **Fosser**; G. Martin; A. Lock; J. Murphy; C. Senior; S. Tucker (2020): Greater future UK winter precipitation increase in new convection-permitting scenarios. J. Climate (2020) 33 (17): 7303–7318.doi:10.1175/JCLI-D-20-0089.1
- **Fosser** G., E.J. Kendon, D. Stephenson, S. Tucker (2020): Convection-permitting Models Offer Promise Of More Certain Extreme Rainfall Projections. Geophysical Research Letters. DOI: 10.1029/2020GL088151
- **Fosser** G., E.J. Kendon, S. Chan, A. Lock, N. Roberts, M. Bush (2019): Optimal configuration and resolution for the first convection-permitting ensemble of climate projections over the UK. International Journal of Climatology. DOI: https://doi.org/10.1002/joc.6415
- Kendon E.J, G. **Fosser**, J. Murphy, S. Chan, R. Clark, G. Harris, A. Lock, J. Lowe, G. Martin, J. Pirret, N. Roberts, M. Sanderson, S. Tucker (externally reviewed): UKCP Convection-permitting model projections: Science report. Crown Copyright 2019, Met Office. Available at: https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP-Convection-permitting-model-projections-report.pdf
- Murphy J.M., G.R. Harris, D.M.H. Sexton, E.J. Kendon, P.E. Bett, R.T. Clark, K.E. Eagle, **G. Fosser**, F. Fung, J.A. Lowe, R.E. McDonald, R.N. McInnes, C.F. McSweeney, J.F.B. Mitchell, J.W. Rostron, H.E. Thornton, S. Tucker and K. Yamazaki (externally reviewed): UKCP18 Land projections: Science report. Crown Copyright 2018, Met Office. Available at: https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Land-report.pdf
- Berthou S, E.J. Kendon, C. Chan, N. Ban, D. Leutwyler, C. Schär, G. **Fosser** (2018): Pan-European climate at convection-permitting scale: a model intercomparison study. Climate Dynamics. DOI: 10.1007/s00382-018-4114-6
- Drobinski P., N. Da Silva, G. Panthou, S. Bastin, C. Muller, B. Ahrens, M. Borga, D. Conte, G. **Fosser**, F. Giorgi, I. Güttler, V. Kotroni, L. Li, E. Morin, B. Onol, P. Quintana-Segui, R. Romera, C. Zsolt Torma (2018): Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios. Climate Dynamics, DOI:10.1007/s00382-016-3083-x
- Kendon E.J., N. Ban, N. Roberts, H. J. Fowler, M. J. Roberts, S.C. Chan, J.P. Evans, G. **Fosser**, J.M. Wilkinson (2017): Do convection-permitting regional climate models improve projections of future precipitation change? BAMS. DOI: http://dx.doi.org/10.1175/BAMS-D-15-0004.1
- **Fosser** G., S. Khodayar, P. Berg (2017): Climate change in the next 30 years: what can a convection-permitting model tell us that we did not know yet? Climate Dynamics. DOI: 10.1007/s00382-016-3186-4
- Khodayar S., G. **Fosser**, S. Berthou, S. Davolio, P. Drobinski, V. Ducrocq, R. Ferretti, M. Nuret, E. Pichelli, E. Richard (2016): A seamless weather-climate multi-model

intercomparison on the representation of high impact weather in the Western Mediterranean: HyMeX IOP12. QJRMS, 142, 433-452. DOI: 10.1002/qj.2700

Prein A., W. Langhans, G. **Fosser**, A. Ferrone, N. Ban, K. Goergen, M. Keller, M. Tölle, O. Gutjahr, F. Feser, E. Brisson, S. Kollet, J. Schmidli, N. P. M. van Lipzig, R. Leung (2015): A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges, Reviews of Geophysics, 53, 323-361. DOI: 10.1002/2014RG000475

Fosser G., S. Khodayar, P. Berg (2015): Benefit of convection-permitting climate model simulations in the representation of convective precipitation, Climate Dynamics, 44, 45–60. DOI: 10.1007/s00382-014-2242-1

Fosser G. (2014) Precipitation statistics from regional climate model at resolutions relevant for soil erosion. KIT Scientific Publishing, Karlsruhe.

Panitz H.-J., G. **Fosser**, R. Sasse, A. Sedlmeier, K., Mieruch, S., Breil, M., Feldmann, H., Schädler, G (2013): High resolution climate modeling with the CCLM regional model, In: High Performance Computing in Science and Engineering '12 [W. E. Nagel, D. Kröner, M. Resch (Eds.)]. Springer Berlin Heidelberg New York 2013, pp 375–389. DOI: 10.1007/978-3-642-33374-3.

Panitz H.-J., G. **Fosser**, R. Sasse, A. Sehlinger, H. Feldmann, and G. Schädler (2013): Modelling Near Future Regional Climate Change for Germany and Africa, In: High Performance Computing in Science and Engineering '12 [W. E. Nagel, D. Kröner, M. Resch (Eds.)]. Springer Berlin Heidelberg New York 2013, pp 375–389. DOI: 10.1007/978-3-642-33374-3.

Panitz H.-J., P. Berg, G. Schädler, and G. **Fosser** (2012): Modelling Regional Climate Change for Germany and Africa, In: High Performance Computing in Science and Engineering '11 [W. E. Nagel, D. Kröner, M. Resch (Eds.)]. Springer Berlin Heidelberg New York 2012, pp 503–512. DOI 10.1007/978-3-642-23869-7.

Fagherazzi S., G. **Fosser**, L. D'Alpaos, P. D'Odorico (2005): Climatic oscillations influence the flooding of Venice, Geophysical Research Letters, 32, L19710, doi:10.1029/2005GL023758.

Padova, 05/09/2025

Dichiarazione sostitutiva di certificazione

La candidata, ai sensi degli artt. 46 e 47 del DPR 445/2000 del 28/12/2000 e consapevole delle sanzioni previste dagli artt. 75 e 76 del medesimo, attesta la veridicità di quanto dichiarato nel presente documento.

Padova, 05/09/2025