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Abstract— A real-time pattern recognition algorithm based on 

k-nearest neighbours and lazy learning was used to classify, 

voluntary EMG signals and to simultaneously control movements 

of a dexterous artificial hand. EMG signals were superficially 

recorded by eight pairs of electrodes from the stumps of five 

transradial amputees and forearms of five able-bodied 

participants and used online to control a robot hand. Seven finger 

movements (not involving the wrist) were investigated in this 

study. The first objective was to understand whether and to 

which extent it is possible to control continuously and in real-

time, the finger postures of a prosthetic hand, using superficial 

EMG, and a practical classifier, also taking advantage of the 

direct visual feedback of the moving hand. The second objective 

was to calculate statistical differences in the performance between 

participants and groups, thereby assessing the general 

applicability of the proposed method. The average accuracy of the 

classifier was 79% for amputees and 89% for able-bodied 

participants. Statistical analysis of the data revealed a difference 

in control accuracy based on the aetiology of amputation, type of 

prostheses regularly used and also between able-bodied 

participants and amputees. These results are encouraging for the 

development of non-invasive EMG interfaces for the control of 

dexterous prostheses⋅⋅⋅⋅ 

 
Index Terms—Dexterous prosthesis, Electromyography 

(EMG), Pattern Recognition, Real-time control, Transradial 

amputation.  

I. INTRODUCTION 

HE challenges towards a real neuro-controlled hand are in 

two areas: robotics and neuroscience. The problems 

researchers are facing are (i) how to develop a dexterous 

mechatronic hand with actuation and sensory features 

comparable to the human hand, and (ii) how to control this 

dexterity. Current battery powered hand prostheses are 
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Fig. 1 Experimental setup. Left: the CyberHand prototype in a natural 

position from the participants’ point of view. The stump lies in a resting 

position. Right: the seven movements included in the experiment. A is thumb 

flexion, B: index flexion, C: thumb opposition, D: middle, ring and little 

flexion, E: long fingers flexion, F: tridigital grip, G: lateral grip. 

 

relatively simple mechanical hands or hooks activated by 

voluntary residual muscle contractions generating 

electromyographic (EMG) signals, superficially picked-up 

from the amputee’s residual limb and properly decoded to 

control an intentional opening or closure [1]. In the past 

decades, knowledge of robotics has been extended to the field, 

so that several new designs including dexterous multiple 

degrees of freedom (DoF) and sensory equipped prosthetic 

hands have been developed and presented by researchers and 

manufacturers (for a review of such devices see [2]). 

Nevertheless one of the main impediments towards a massive 

clinical evaluation and their commercial exploitation is 

represented by the lack of a robust, reliable, and intuitive 

control interface, allowing dexterous control. While 

acquisition of invasive biosignals from the motor cortex may 

be suitable for tetraplegics [3], who have lost their ability to 

control the entirety of their upper limbs, and less invasive 

Online Myoelectric Control of a Dexterous 
Hand Prosthesis by Transradial Amputees 

Christian Cipriani*, Member, IEEE, Christian Antfolk, Student Member, IEEE,  

Marco Controzzi, Student Member, IEEE, Göran Lundborg, Birgitta Rosén,  
Maria Chiara Carrozza, Associate Member, IEEE, and Fredrik Sebelius 

T 



Accepted for publication on IEEE Trans. Neural Systems and Rehabilitation Engineering, 2011 

 

3 

techniques like the Targeted Muscle Reinnervation (TMR) 

procedure [4], or the implantation of neural interfaces in the 

peripheral nerves [5] may provide more accurate 

controllability, noninvasive biosignals such as surface EMG 

from a residual limb seem to be the most appropriate near term 

solution for transradial amputees. Besides, sophisticated 

human-machine interfaces like [4] and [5] still have to prove 

their effectiveness in a number of patients. 

To myo-electrically control a dexterous prosthesis it is 

necessary to map EMG signals (corresponding to different 

muscle contractions) to the different existing DoFs using 

pattern recognition based algorithms [1], [6]. To this aim, 

since the 1960s, various groups have designed controllers 

using different combinations of extracted features and 

classification methods (for a review of the EMG processing 

techniques refer to [6]) showing the feasibility of controlling 

dexterous prostheses. These systems have been demonstrated 

usually through offline pattern recognition [7]-[15], through 

algorithms suitable for real-time processing and classification 

[16]-[18], but only in few instances, with actual real-time 

classifiers [19]-[23] or directly controlling robotic hand finger 

movements [24]. 

Among these studies only a few investigated the possibility 

of controlling independent finger movements, or hand gestures  

[15], [16], [21], [24], while most considered wrist movements 

such as flexion/extension, pronation/supination, 

abduciont/adduction and sometimes hand closure/opening (all 

fingers simultaneously). Due to their gross nature, these 

movements are more reliably detected, with respect to finger 

postures or specific grips, but surely less intuitive if the aim is 

to control finger postures or particular grasps. However, as 

remarked by Tenore et. al [16] the greatest level of dexterity 

corresponds to achieving endpoint control of each individual 

finger, and this should be implemented with regards to the 

three key aspects of controllability, as Englehart and Hudgins 

identified in [18]: accuracy of movement selection, 

intuitiveness of the interface, and response time of the control 

system. Within this framework the problem of (i) real-time, (ii) 

accurate, and (iii) intuitive finger control for dexterous 

prostheses has been left open, and to our knowledge there is no 

previous research dealing with all these aspects 

simultaneously. 

Our previous work showed preliminary data on the off-line 

pattern recognition of hand movements in a single transradial 

amputee performing different finger motion tasks [25]. This 

paper presents the first work on the simultaneous decoding of 

seven hand postures (finger movements) and real-time control 

of a robotic hand, performed by 10 participants using 

superficial EMG. Five of the participants were able-bodied 

and five transradial amputees, among which one had a 

congenital failure of formation. The proposed experiments 

were aimed at addressing two key objectives. The first 

objective was to understand whether it was possible to control 

in real-time, with reasonable accuracy the finger postures of a 

prosthetic hand, using superficial EMG and a practical 

classifier based on local approximation using lazy learning 

[26]. Therefore this study was to investigate the effect of 

visual feedback on the amputee, that is not possible with 

offline classifiers. The second objective was to verify the 

general applicability of such method, and therefore to assess 

statistical differences in the classification accuracies between 

participants and groups. Once the real-time controllability of 

the proposed system has been shown, we elaborate on the 

feasibility of making it portable for real clinical 

experimentation and evaluation in activities of daily living 

(ADL) and for future industrial exploitation.  

II. MATERIALS AND METHODS 

A. Artificial Hand 

A stand-alone version of the Cyberhand [27] was used (see 

Fig. 1) in the experiments. It is a right hand, with five 

underactuated fingers driven by six motors: five of which are 

employed for the independent flexion/extension of the fingers, 

and one for the abduction/adduction of the thumb (detailed 

description in [27]). Position sensors (encoders) and tendon 

tension sensors (able to measure the grasp force for each finger 

[28]) are integrated in the hand. Position control loops are 

embedded in a 8-bit microcontroller-based architecture and 

triggered by external commands from a standard RS232 bus. 

Therefore it is possible to drive each finger to a specific 

flexion posture by simply sending an appropriate position 

command. 

B. EMG Real-time Pattern Recognition and Control 

The pattern recognition system, slightly revised from the 

one presented in [29], is composed of (i) an eight channel 

bipolar EMG signal acquisition system, (ii) a data glove 

recording healthy hand joint positions, and (iii) a PC, running 

an application acquiring glove-data and EMGs, implementing 

pattern recognition algorithms based on lazy learning [26] and 

sending real-time control commands to the hand. Myoelectric 

signals collected from electrodes were filtered and amplified 

(2nd order band-pass filter, bandwidth 3-1000 Hz, Gain 5000 

using NL824 amplifiers from Digitimer Ltd, UK) , sampled (at 

10 kHz), and digitized (12 bits resolution) by a data 

acquisition board (DAS16/330, Measurement Computing). 

The data-glove (Cyberglove, Virtual Technologies) with 18 

finger joint angle sensors, was fitted on the hand opposite to 

where EMGs are recorded; for amputees this was their intact 

hand (cf. Fig. 1). The purpose of the glove was to record 

reference positions to be associated with EMG recordings and 

to be used as position set-points for the artificial hand, as in 

[16], [29]-[31]. This was also a relatively simple way for 

identifying when the movement was actually performed, and 

for tracking and mapping EMG patterns to finger trajectories 

[16] when participants perform synchronously predefined 

movements with both their hands (or with their healthy and 

phantom hands). Therefore, the 18 glove joint-angles were 

mapped into 6 position control values (suitable for the 6  
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Fig. 2 EMG-glove pattern recognition scheme. I means inputs (nine EMG 

signals) and J means glove data (18 joints values). 

 

motors of the artificial hand), to resemble the postures of the 

healthy hand (wearing the glove) with the Cyberhand. In 

particular, for each finger the metacarpo-phalangeal and 

proximal inter-phalangeal sensor values from the Cyberglove 

were linearly combined to obtain the CyberHand flexion 

position, and the rotation angle from the Cyberglove thumb 

was directly mapped to the abduction/adduction DoF of the 

CyberHand. This calibration was performed on an individual 

basis when donning the glove as it fits each person differently. 

The mean of the absolute value (MAV) was the feature 

selected for real-time classification. A custom made 

application written in Visual C++ was the core of this 

classifier; hand control commands were generated and sent to 

the artificial hand by implementing the following machine 

learning schema. 

1) Supervised learning phase: the participant performed 

synchronous movements with both his hands, and both glove-

data (from the healthy hand) and EMGs (from the stump or 

contralateral arm) were acquired by the PC.  

The MAV for each EMG-channel was computed by first 

rectifying and then smoothing the signal using an exponential 

band-pass filter [29]. Thereafter the signals were down-

sampled with a frequency of 20 Hz by using a moving average 

filter (500 samples). One extra EMG signal was added 

containing the computed mean value of the 8 channels. This 

ninth channel could be used for determining the onset of a 

movement, and in earlier work it has actually increased the 

performance of the classifier [11]. Every 50 ms nine new EMG 

values were available and stored in a push vector memorizing 

the last five vectors (covering EMG data 250 ms back in time). 

Accordingly the input data for the classifier was composed of 

vectors having a dimension of 9 x 5 = 45, i.e. the feature space 

dimension. The output vector dimension was 18, i.e. all joints 

data representing the most recent samples of the hand position 

(cf. Fig. 2). In the supervised learning phase the system learns 

how to map the EMG patterns to joint-angle outputs. 

2) On-line classification and control: during this phase, 

EMG signals were acquired, their MAV were computed, and 

pattern recognition was performed by means of local  

 
Fig. 3 Location of the eight pairs of bipolar electrodes. 

 

approximation of the input patterns to the training data, using 

the k-nearest neighbour algorithm (k-NN, with k=8 and 

Euclidean distance as the distance metric [32], [33] and lazy 

learning with linear search method [26]). Briefly, every 50 ms 

the algorithm searches the data for the eight nearest neighbours 

of the input pattern; this was done by computing the Euclidian 

distance (d) between the input pattern and the stored EMG 

patterns. The d-values are stored on a stack, with the eight best 

ones on the top of the stack at the end of the search (on our 

current setup this search takes less than 1 ms). The output is 

then calculated as their average. This algorithm was used to 

predict, in real-time, joint positions, i.e., to control the 

prosthesis postures based on EMG patterns.  

New predictions were computed every 50 ms, which was 

fast enough for the control to be considered as smooth and 

real-time. This decision stream was post-processed by an 

exponential smoothing filter (with smoothing factor �=0,15) 

to eliminate spurious errors in the set-position control 

commands sent to the hand controller [18]. One of the main 

advantages employing such control is that learning takes 

instant effect, as the actual training is merely storage of data 

making it suitable for real-time control applications [29]. 

C. Participant Groups & Experimental Setup 

Ten participants, having given informed consent, took part 

in the experiments. Five participants - four men (a1-a4) and 

one woman (a5) - were transradial amputees (group a): 

demographic data for these participants are presented in Table 

I. Five other young participants –three men (b1-b3) and two 

women (b4-b5), aged 27-32- were able bodied participants 

with no known history of neuromuscular disorders. The results 

from an off-line analysis from participant a2 have been 

previously documented in [25]. 

Eight bipolar EMG surface electrodes (Ag/AgCl, from 3M 

Health Care, Germany) were placed on the participants’ right 

forearms or residual limbs. For both amputees and able-bodied 

participants, six electrodes (CH1..CH6) were placed on 

superficial flexor muscles (on the volar-ulnar side of the 

forearm), and the last two (CH7 and CH8) were placed on 

superficial extensor muscles as shown in Fig. 3.  

The considerable differences between the different stumps 

in length and diameter influenced the placement of the 

electrodes: it was therefore impossible to standardize their 
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localization for amputees. For the participant with the shortest 

remaining forearm (a4), e.g. the electrodes nearly covered the 

stump. The general purpose of the placement was to achieve 

recordings from as many different muscles as possible, and the 

optimization of localization was accomplished by minimizing 

the cross-talk visually. 
  

TABLE I 

DEMOGRAPHIC DATA 

ID AGE 
Missing 

hand 

Stump 

length 

Time after 

amputation 

Prosthesis 

used 

Dominant 

hand 

a1 47 Right 24 cm 12 years Cosmetic Right 

a2 23 Right 16 cm 2 years Myoelectric Right 

a3 54 Left 10 cm 3 years Cosmetic Right 

a4 37 Left 9 cm 25 years Myoelectric Right 

a5 24 Left 11 cm Congenital 

failure of 

formation 

Myoelectric - 

 

The participants were sitting in front of a table with their 

residual limb lying in a comfortable position, parallel to the 

artificial hand (cf. Fig. 1). Since only a right artificial hand was 

available, a mirror was used to create a reflection of the 

artificial hand on the left side for the three left-hand amputees. 

A mirror was therefore placed obliquely in front of the 

participant so that the right-hand prosthesis was reflected and 

visually superimposed as close as possible to the stump [34].  

The goal was to allow the participants to voluntarily 

perform seven hand movements and prehensile patterns useful 

for ADLs: A) thumb flexion; B) index finger flexion; C) thumb 

opposition; D) middle, ring, little finger flexion; E) long 

fingers flexion; F) tridigital grasp; G) lateral grip/key grip 

(Fig. 1A-G respectively). Following the pattern recognition 

scheme previously mentioned, the protocol was divided into 

two phases: the supervised learning phase (where both the 

participant and the classifier got trained) and the evaluation 

control phase (where the artificial hand was controlled by the 

participant using EMG in real-time).  

In the supervised learning phase each of the seven 

movements were executed by the participants three times 

consecutively in response to an auditory cue from the operator, 

from movement A (the thumb flexion) to movement G (lateral 

grip). Each trial consisted in contracting and actively holding 

the contraction for about five seconds (i.e. static contraction) 

and returning back to a relaxed state for five seconds (no 

contractions). During this supervised learning phase the system 

was trained and simultaneously used for controlling the 

prosthesis, which gave the user immediate feedback of the 

quality of his control and training. In the evaluation control 

phase, the same sequence of movements was repeated (three 

times each, ordered from A to G) for a total of 21 movements, 

and the EMG pattern was classified into hand postures, which 

were executed on-line by the CyberHand. This procedure was 

repeated three times, and after the third evaluation phase the 

21 movements were also executed by each participant in a 

random order.  

 

 
Fig. 4. Experimental protocol  (a) One-day experimental session. (b) Second 

day experimental session for amputee a5. SL means Supervised learning 

phase, E means Evaluation phase, and RE means Random Evaluation phase. 
Values within parentheses denote the number of hand movements in each 

session repeated three times each. 

 

Therefore, the final evaluation session (FE in Fig. 4A) 

consisted of 42 movements. Training data was cleared between 

each session since participants usually get 

 better at using their muscles with time. A graphical 

description of the protocol is provided in Fig. 4A. 

The woman with a congenital failure of formation 

(participant a5) performed experiments following a different 

protocol due to her particular situation. Our previous study 

showed that people with congenital missing limbs have 

difficulties in generating specific finger movements [31]. 

Therefore fewer movements were included, but with more 

repetitions and split in two different sessions, the second 

session seven days after the first one. Participant a5 performed 

five training and evaluation sessions in the first day executing 

three movements, and six training and evaluation sessions in 

the second day, with three movements in the first three 

sessions and four movements in the last four sessions (cf. Fig. 

4B). The final evaluation session (on day 2), was twice as 

long: i.e. four movements, three times each, performed twice 

(FE in Fig. 4B). This particular protocol has been designed in 

order to slowly train the participant to perform unused or even 

“unknown” muscle contractions. 

D. Empirical Evaluation 

To estimate the real-time classification error, during the 

evaluation phases, the participant was given five seconds from 

the time of the cue to generate the corresponding movement 

(as in [20]). In each evaluation phase, each movement was to 

be performed three times. For the purpose of system 

evaluation the 18 joints were subsequently off-line mapped 

into eight classes (seven movements plus the relax position). 

Three metrics were used to quantify EMG real-time control 

performance based on a work by Li et al. [23]. The motion-

selection time (Ts), defined as the time taken to correctly 

select a target movement. This quantity represented how 

quickly EMG command information could be translated into  
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Fig. 5 Outputs of the classifier during one trial for each movement from one evaluation session (participant a3). The graphs present: the intended flexion 
trajectory (bold curve), the classifier output (dashed curve) and the actual measured position from the real hand (grey curve), from significant fingers in the 

movement (movements and significant fingers plotted defined in top of the graphs). Vertical lines denote the movement onset (dashed), the motion-selection and 

motion-completion times (thin lines). 

 

the correct motion predictions. It was measured as the time 

from the onset of movement to the first correct prediction of 

the movement. The onset of movement was identified as the 

time of the last no movement (relax) classification; this 

corresponded to approximately a 5% increase in the computed 

mean absolute value (ninth EMG channel) of the baseline 

EMG signals. The motion-completion time (Tc), was the time 

taken to successfully complete a movement through the full 

range of motion. It was measured as the time from the onset of 

movement to the completion of the intended movement, 

calculated as in [23] as the time of the tenth correct 

classification. Ten accumulated correct classifications were 

required for a motion completion. The minimum possible time 

to complete any motion was normalized to 0.5 s,

corresponding to ten consecutive correct classifications as a 

new classification occurs every 50 ms. The motion-completion 

rate (MR in the graphs), or classification accuracy was 

defined as the percentage of successfully completed motions. 

This metric was a measure of performance reliability [23]. The 

motion-selection and motion-completion time of a movement 

was counted only if the movement was successfully completed 

within 5 s. 

Statistical differences among experimental motion-

completion rates were evaluated using the Friedman test. 

Differences in time metrics were evaluated using the two-

sample Kolmogorov-Smirnov test. If the Friedman test 

suggested that there was a difference, groups were compared 

pair wise using the Bonferroni adjustment. A level of p < 0.05 

was selected as the threshold for statistical significance. The 

statistical analysis was performed using MatLab (The 

MathWorks, Natick, MA, USA) scripts. 

I. RESULTS 

The results are based on the processing of EMG data 

recorded from 8 electrodes, from 5 amputees and 5 able-

bodied participants, in four evaluation sessions. In the 

performed experiments, the mean classifier dimension, i.e. the 

mean number of vectors used for supervised learning, was 

3887 (equivalent to 194 sec training duration). This means that 

the system produced outputs for controlling the hand, 

searching and averaging among 3887 possible postures. This 

section firstly presents results for the traumatic amputees 

(a1..a4) and able-bodied participants; thereafter the results 

achieved by participant a5, for whom the experimental 

protocol was significantly different from the others. 

Fig. 5 shows the outputs of the EMG classifier during some 

significant trials from participant a3 (worst performer) 

executing all movements, isolating one repetition for each 

movement. The graphs show three output curves related to one 

single finger representative for the movement (e.g. the thumb 

flexion for movement A, the index for movement B, etc.). The 

bold black curve represents the intended movement (as 

recorded from the data-glove), the dashed curve is the 

classifier output, and the light grey curve is the prosthetic hand 

real-time posture (i.e. what the participant was actually seeing) 

that takes into account of the mechanical response delays of 

the system. The dashed vertical lines represent the beginning 

of the movement and the thin vertical lines indicate motion-

selection and motion-completion times respectively (if 

present). From the comparison of the curves it is possible to 

understand the differences between the output of the classifier, 

and the actual trajectory performed by the fingers (as recorded 

from the encoders). Rapid changes in the output of the 

classifier are not followed by the hand, that responds as a low 

pass filter (with a mechanical pole approximately at 0,4 Hz). 

In addition it is possible to recognize when the movement is 

classified (dashed and bold curves overlapped), and when a 

movement was physically performed (when the light grey 

curve overlaps the others). In particular, only movement D was 

clearly executed from the beginning; other movements were 

classified after an initial error (A, C, G) and other were 

significantly unstable (B, E, F).  

Table II shows the evolution of classification accuracy, Ts, 

and Tc during the evaluation sessions (E 1, E 2, and FE 

divided in the graphs into E 3 and RE, cf. Fig. 4). Globally 

accuracies improve with time both for traumatic amputees and 

for able-bodied participants, but with no statistical 

significance. Time metrics show different trends with no 

statistical differences between trials. The four graphs in Fig. 6 

show motion-completion rates of each traumatic amputee, on 

each class of movement varied across sessions (therefore 

across training sets); figures are based on six trials for each 

movement. Participants a2 (91%, 81%, 98% across E 1, E2 

and FE) and a4 (91%, 86%, 86%) obtained higher accuracies 

compared to a1 (57%, 67%, 69%) and a3 (48%, 52%, 62%). 

The graph in Fig. 7 represents individual performance 

metrics for the participants in this study, in the final evaluation 

phase, performing the seven movements. Light grey bars 

represent the classification accuracy for each participant 

(values to be read on the left Y axis), white lozenges denote Ts  
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Fig. 6 Motion-completion rates of each amputee, on each class of movement varied across sessions. 

 

and black lozenges Tc (right Y axis). It is interesting to note 

that the accuracy for the best amputee (a2) is equal to that of 

the best able-bodied participant (b5), and very good (98%). 

Participant a2 selected and completed movements much faster 

than b5 (Ts 0.2 s vs. 1.14 s; Tc 0.8 vs. 1.83 s), therefore a2 

globally performed better than b5. Among the amputees, the 

lowest performance was achieved by participant a3, with only 

62% of successful movements. It is important to point out that 

this participant suffered from phantom limb pain that imposed 

us to interrupt the experiments several times in order for the 

participant to rest. Moreover, being a cosmetic hand user he 

was not used to contract his forearm muscles. 

Fig. 8 summarizes and compares the averaged classification 

accuracies achieved by the two groups based on the seven 

movements. The data includes all participants, in their final 

session (FE in Fig. 4), i.e. when performance is presumed to 

be highest. The light grey bars of the graph refer to the group 

of traumatic amputees, the dark grey to the able-bodied 

participants (group b). White markers (lozenges and triangles) 

indicate Ts, whereas dark grey ones denote Tc. Group b 

globally performed better than amputees (89% vs. 79%). 

Movements D, F and G were performed with considerably 

higher accuracy by group b. The best accuracy was obtained 

by group b performing movement D (middle, ring and little 

flexion), correctly classified 30 times out of 30. Time metrics 

vary among the movements: some of them were performed 

faster by group b (movement A, D), some by the amputees (B, 

E, G), and a few (C, F) similarly; globally amputees achieved 

better results in terms of time metrics compared to group b 

(see also Table II). The classification accuracy of the real-time 

classifier, discriminating seven movements and considering the 

nine participants was about 84% in accordance to previous 

similar research [11], [16], [21], [23], [24]. 

 
TABLE II 

PERFORMANCE METRICS VS. TIME/EVALUATION TRIAL 

 Traumatic amputees Group b 

 E 1 E 2 E 3 RE E 1 E 2 E 3 RE 

80 77 91 88  

MR 

(%) 

 

70 

 

73 
79 

 

86 

 

88 
89 

0.55 0.77 0.78 0.79  

Ts 

(s) 

 

0.85 

 

0.70 
0.67 

 

0.73 

 

0.65 
0.78 

1.25 1.36 1.37 1.42  
Tc 

(s) 

 
1.55 

 
1.37 

1.30 

 
1.36 

 
1.32 

1.40 

 

A Friedman’s test on the classification accuracies reveals 

several interesting points, in agreement with expected 

outcomes and highlighting interesting issues. There is no 

statistical difference in accuracy among able-bodied 

participants (p = 0.3628), whereas amputees’ results are 

significantly different (p < 0.001). This means in other words 

that able-bodied participants belong to the same group (as 

actually expected), while amputees do not, which is reasonable 

considering the differences in stumps, age, etc., described in 

Table I. The hypothesis is that amputees are divided in two 

groups: myoelectric hand users (hereafter aM) and cosmetic 

hand users (aC). The former are trained and used to contract 

their muscles to operate their artificial limb, while the latter are 

not (or at least less). The hypothesis, which is visually 
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Fig. 7 Comparison between participants and groups in the final evaluation 

session. Left Y axis: mean classification accuracy in light grey bars; each 

column is based on 3x7x2 movements. Right Y axis: mean motion-selection 

time, Ts (white lozenges) and motion-completion time, Tc (black lozenges). 

 

supported by the graph in Fig. 7, is also confirmed by the 

Bonferroni test: participants a1 and a3 (aC group) belong to 

the same distribution (p = 0.4913), and the same occurs for a2 

and a4, the aM group (p = 0.0588). The comparison between 

aC and aM gives a p value equal to 3.2·10-5 meaning that the 

groups are statistically different. Participant a5 was 

deliberately left out of this analysis since she is a congenital 

amputee, therefore different from the other cases. The second 

hypothesis is that myo-prosthesis users and unimpaired 

participants belong to the same group. Again the Friedman test 

confirmed this statement: comparing group b and aC yields a 

p-value equal to 0.0337 (significantly different), and 

comparing group b and aM gives a p-value of 0.88 

(statistically equal).  

The frequency of occurrence graphs in Fig. 9 present the 

percentage distribution of the time required for the successful 

selection and completion of all attempted movements during 

the final evaluation session (percentages are referred to the 

number of correctly executed movements for each group: 132 

movements for amputees and 189 for able-bodied 

participants). The graphs show similar trends, and the majority 

(over 80%) of successfully achieved movements are selected 

within 1.25 s and 1.35 s for amputees and able-bodied 

participants, and completed within 2.25 s. These differences 

were not statistically significant (p = 0.26 for Ts and p = 0.74 

for Tc). Statistical differences in motion-selection times 

distributions are not found within able-bodied participants (p = 

0.644) and not even within traumatic amputees (p = 0.058). 

Though, in the latter case, the p value is close to the significant 

figure; therefore, comparing amputees pair wise statistically 

differences are found between a2 and a1 (p = 0.025) and a2 

and a4 (p = 0.014) (between a2 and a3 p is 0.059). Same 

figures are found for the motion-completion times.  

Results from participant a5 are presented hereafter. Table 

III shows how performance metrics varied across sessions and 

days for the congenital amputee. The trend for accuracy is 

clearly positive, reaching a 100% success at the end of both 

days, whereas time metrics are highly variable.  

 
Fig. 8 Comparison between movements (corresponding to letters as defined) 

and groups in the final evaluation session (figures are calculated based on 5 x 

6 trials for group b and on 4 x 6 trials for amputees). Left Y axis: grey bars 

present motion-completion rate, for traumatic amputees and able-bodied 

participants based on all movements. Right Y axis: mean motion-selection 

time, Ts (white markers) and motion-completion time, Tc (dark grey markers) 
for amputees (lozenges) and able-bodied participants (triangles). 

 

Graphs in Fig. 10 show the performance metrics in the final 

evaluation phase (comprising E6 and RE) based on 24 

movements in total: participant a5 successfully completed 23 

movement out of 24, 80% of which within 1 second. Finally, 

motion-completion rate from participant a5 is statistically 

compared with the different representative groups (b, aC and 

aM) only considering the four movements performed (B, D, F, 

G), resulting in non-statistical differences ( p > 0.8 against aM 

and b, p > 0.1 compared to aC ). 

I. DISCUSSION 

This paper confirms previous studies demonstrating that it is 

possible to decode hand gestures in real-time using EMG-

patterns in transradial amputees and to intuitively control an 

artificial hand with great accuracy. Furthermore, we show that 

using the presented classifier there is no difference in decoding 

accuracy between unimpaired participants and myoelectric 

hand users, whereas there is a difference between unimpaired 

participants and cosmetic prostheses users, in absence of 

training. It is worth saying that all the statistical analysis here 

presented should be supported by further work on a larger 

group. One surprising outcome is that the congenital amputee 

managed to control four movements to a high degree of 

accuracy. 
 

A. On the Proposed Architecture 

The presented system represents an effort - using non-

invasive techniques - to narrow the gap in current control 

technology for individuals with a hand amputation at a 

transradial level. For these individuals, with most of the 

forearm sensory-motor system still intact, a TMR procedure 

[4] would probably be too invasive and therefore its 

employment debatable. TMR is clearly more suitable for 

proximal amputations, where the original musculature for 
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Fig. 9 Frequency of occurrence for motion-selection time (left panel) and motion-completion time (right panel) for amputees (light grey curves) and able-bodied 

participants (dark grey curves) during the FE session. The Y axes represent the percentage of attempted movements selected or completed within time bins of 

0.05 s and 0.25 s, respectively. The motion-selection time graph presents 92% and 91% of samples from amputees and able-bodied participants, respectively. 

 

 controlling the hand is no longer accessible. Consequently, 

transradial amputees could benefit from either peripheral 

neural implants [5] or from an advanced non-invasive interface 

such as the one here proposed, for an increased and more 

natural control of next-generation robotic prostheses. 

The main advantage of this controller, with relation to the 

three key issues previously mentioned is related to its 

intuitiveness. Finger movements of the artificial hand are 

controlled by exactly executing the original physiological 

movements unlike most of the pattern recognition systems 

developed earlier, where different hand functions (or grasps) 

are usually remapped to wrist movements [16], [18]-[20], [22]. 

Moreover the control is continuous: i.e. the signal modulation 

can move from one movement to another without first going to 

the relax (rest) posture. This is desirable from the user’s point 

of view as it is more efficient and results in a seamless function 

transition [1].  

The k-nearest neighbors decision rule is the basis of a well-

established, high performance pattern recognition technique 

[32], [33]. It is a typical example of instance based (memory 

based) learning, i.e. that it constructs hypotheses directly from 

the training instances themselves [32]. Thus, as soon as the 

training data is recorded the system is ready for real-time 

control. This causes two main drawbacks: the longer the 

training is (i) the larger memory space is required and (ii) the 

pattern recognition algorithm requires more time and 

computing to search through the entire learning data set to find 

the nearest neighbour and produce an output. In the present 

architecture, using a standard desktop PC (Intel Pentium M, 

clock speed 2.1 GHz, and 2 GB RAM), none of such 

drawbacks affected the experimental outcomes: every 50 ms a 

new output was correctly produced (but less than 1 ms was 

required for each search) and the mean memory space required 

in the sessions (for a 194 seconds mean training duration) was 

about 840 kbytes.  

The entire delay of the system accounts for the classifier 

delay (50 ms) and for the internal controller delay of the hand ( 

< 5 ms); therefore this control system is reactive enough to be 

considered as smooth and real-time. 

Finally, as mentioned in [16], there is no practical limit to 

the number of electrodes that can be integrated into a 

prosthetic socket, therefore, the number of electrodes used in 

these experiments should not be considered a hindrance 

toward embedding in an actual prosthesis. 

A. On the Experimental Outcomes 

Graphs in Fig. 6 show that cosmetic hand users (a1 and a3) 

globally increased their performance over time. Even if this 

effect is not supported by statistics, it seems natural when 

considering that they had not used their muscles for a long 

time and therefore some training was needed before being able 

to generate significant and coherent muscle contractions. 

However, there is an extra consideration to take when working 

with cosmetic hand users: it is possible that the stump might 

not have developed protection around the tendons that have 

been reattached to the remaining bone structure, which will 

produce an increased irritation of the stump. Therefore for a 

short term comparison, the current protocol would be suitable, 

but for longer term applications, a period of adaptation is 

required to really appreciate the performance of the system on 

cosmetic hand users. Conversely, in myoelectric hand users 

(a2 and a4) this trend is not evident: since they performed well 

from the beginning there is no statistically significant 

improvement in subsequent sessions. The explanation is that 

since they have a well trained motor system, the EMG signals 

had high correlation with the recorded movements, from the 

beginning of the experiments. The importance of the training 

level is also confirmed by the Friedman test: cosmetic hand 

users motion-completion rates were statistically different from 

unimpaired participants and myoelectric hand users, whereas 

these last two groups belong to the same distribution. This 

result also reveals that further developments of the present 

classifier could be assessed with just able-bodied participants. 

In agreement with [23] there was no difference in time 

metrics between the amputees and unimpaired subjects. 

Movements were successfully performed in 5 s or less by  
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Fig. 10 Metrics for the congenital amputee during the final evaluation session. Left panel: motion-completion rate (grey bars, left Y axis); motion-selection 

(white circles) and motion-completion (black circles) times (right Y axis). Right panel: frequency of occurrence for motion-selection time (white circles) and 

motion-completion time (black circles); the Y axis represents the percentage of attempted movements selected or completed within time bins of 0.05 s and 0.25 

s, respectively. 
 

TABLE III 

CONGENITAL AMPUTEE PERFORMANCE METRICS VS. TIME/EVALUATION TRIAL 

 Day 1 Day 2 

 E1 E2 E3 E4 E5 E1 E2 E3 E4* E5* E6* RE* 

MR (%) 88 83 90 89 100 40 60 70 92 92 92 100 

Ts (ms) 120 160 190 450 50 660 210 220 170 1070 60 35 

Tc (ms) 570 645 740 900 500 1110 1060 985 865 1705 560 935 

Percentages are based on three movements repeated three times; the last four sessions of day 2 (denoted by asterisks).  

 

amputees as quickly as by able-bodied participants (but fewer 

movements were successfully performed by amputees). 

Considering time metrics, the only statistical difference is for 

participant a2, being faster than other amputees (and able-

bodied participants, cf. Fig. 7) in performing and completing 

the movements. Explanations for the better performance of 

subject a2, may be related to his age, short time after 

amputation (cf. Table I) and to the exceptional qualities of the 

participant himself (he practices sports, plays the drum, 

carrying out a “normal” lifestyle). This may have cognitively 

trained him to use forearm muscles in a very conscious way 

compared to other less-active amputees and unimpaired 

people. 

The subject with a congenital failure of formation is of 

special interest. She had a simpler training protocol beginning 

with three movements and in the last day increasing to four. 

The participant was a well-trained myoelectric hand user and 

thus had earlier used muscles, but just for opening and closing 

one grip. Surprisingly she managed to control all four 

movements to a very high degree of accuracy (96%, cf. Fig. 

10) and short completion times (80% within 1 s). This is an 

interesting outcome as it indicates that the motor system of the 

amputee is still highly organized and little effort was needed to 

mobilize the right areas of the motor brain cortex to induce 

these movements. It is known that patients with congenital 

failure of formation can induce imaginary movements in their 

missing hands and that such procedures are associated with 

activity in the motor cortex [35]. One possibility is that 

sleeping motor areas, present since birth, are awakened and 

brought into action. Another explanation is that adjacent 

cortical areas are recruited into new functions induced by 

training. 

A. On the Experimental Setup 

EMG electrodes are typically placed on the muscle belly of 

the targeted muscles; this however would demand more 

electrodes as there are 19 muscle groups in the forearm, not 

perfectly separated in both unimpaired and amputees 

(especially for very short stumps). Moreover since the 

important issue for this classifier is to recognize unique EMG 

patterns from the electrode matrix, the optimal placement is 

not necessarily on the top of muscle bellies. However, 

performances would possibly increase by individual 

adjustment of electrode positioning, optimizing amplification 

and noise levels, and optimizing filter parameters to the EMG 

responses. 

As in all previous research related to dexterous prosthesis 

control using pattern recognition techniques, the experiments 

here presented have been done in a very well controlled 

environment, with the stump (or forearm) of the participants in 

a comfortable position. This study represent a preliminary step 

towards the development of a naturally controllable hand using 

non-invasive interfaces, and to achieve this goal the future 

version of the controller must be able to deal with muscular 

activity of a free-to-move residual limb.  

The data-glove was employed to associate in a simple 

manner, continuous EMG activity to continuous hand postures, 

and for determining off-line the onset of the movement. In 

another setup, the glove could be removed and visual input 

cues be used. This would be useful for bilateral amputees. 

The movements selected for the experiments have been 

chosen purposely to fit the possible movements of  a prosthetic 

hand being under development, having an independently 
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actuated thumb flexion, thumb abduction, index flexion, and 

the last three fingers (middle-ring-little) mechanically coupled 

[36].  

B. On the Suitability for Actual Dexterous Prostheses 

The control architecture presented in this paper has been 

used to demonstrate the feasibility of controlling finger 

movements with great accuracy. It is currently not suitable for 

integration into a real prosthetic socket to be used by 

transradial amputees, as it employs non-portable components 

for acquiring and processing EMGs: bulky laboratory 

amplifiers and a traditional desktop computer with a data-

acquisition card.  

The data acquisition circuit could be miniaturized 

employing surface mount operational amplifiers and 

multiplexing the buffered and high-pass filtered EMG channels 

at the cost of a sampling rate reduction. The pattern 

recognition could be implemented using a state of the art 

embedded architecture with a microprocessor and a real-time 

operative system or a FPGA. It should be noted here, that very 

fast processors and DSPs are nowadays available (TI C6000 

series clocks at up to 1,2 GHz, Freescale MSC8154 up to 1 

GHz, Analog Devices Blackfin up to 600 MHz). Doing only 

“data-crunching” on the embedded processor (no graphics) 

should enable a slower processor to do this. The memory 

requirement (that strongly affects size and power consumption 

of the embedded circuits) is not critical as well; considering a 

180 seconds training (as in the present experiments), and using 

memory compression techniques, about 256 kBytes (2 Mbit 

memory, commercially available) would be needed, without 

changing the pattern recognition architecture. Finally this 

system could be used in combination with transradial 

prostheses with independently actuated fingers like the i-LIMB 

(Touch EMAS, Ltd., Scotland) or with recent advanced 

research devices [2].  

Combining these suggested systems would bring about an 

architecture well suited for functional testing of the whole 

system on transradial amputees. Future investigations will 

include the interaction with objects (real grasps) and the 

development of a pattern recognition system adaptive to the 

different possible stump positions, allowing the 

accomplishment of activities of daily living. 
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