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Abstract—A new application for electrooculography (EOG) 

based on the primary role of vision in human prehension function 

is here described: namely, the control of prehension of hand 

assistive devices (HADs) through visual features estimation of a 

target object. We hypothesized processed vertical and horizontal 

EOG signals while observing (border-scanning) an object, as a 

suitable method for estimating its visual features, which are 

essential for selecting the grasp affordance. To prove the 

hypothesis, firstly we recorded EOG signals in ten healthy 

subjects, while scanning different lines and objects. The 

measurements aimed at evaluating the successful recognition rate 

of five different shaped objects. Off-line analyses demonstrated 

that successful object recognition, was significantly high and 

ranged between 74.3%-97.1% across subjects. In order to assess 

the practical viability of the system we implemented it in real-time 

to control on-line a robotic hand in grasp tasks, and tested it on 

fifteen subjects. Outcomes showed the viability to differentiate 

between four affordances already after a short training. 

 

Index Terms—Assistive devices, control of prehension, 

electrooculography, human-machine interfaces.  

I. INTRODUCTION 

HE loss of hand function, due to amputation or 

neurological injuries, causes severe physical and 

psychosocial debilitation. The most evident and critical 

impairment after upper limb amputation or neurological injury 

like brachial plexus or spinal cord injury is the loss of the 

prehension i.e. the ability to perform those movements in which 

an object is seized and held partially or wholly within the 

 
Manuscript received 15 March, 2012. This work was supported by the 

European Commission, under the WAY Project (EU-FP7-ICT-288551), and by 

grants from the National Natural Science Foundation of China (No. 60873125, 

3080028, 61031002, 61001172), the Zhejiang Provincial Natural Science 

Foundation of China (No. Y2090707) and the Ministry of Science and 

Technological Development of Serbia (research grant #175016). Asterisk 

indicates corresponding author. 

*C. Cipriani, M. Controzzi and M. C. Carrozza are with The BioRobotics 

Institute, Scuola Superiore Sant’Anna, 56025 Pontedera, Italy (e-mail: 

ch.cipriani@sssup.it). 

Y. Hao and X. Zheng are with the Qiushi Academy for Advanced Studies, 

the Department of Biomedical Engineering, and the Key Laboratory of 

Biomedical Engineering of Ministry of Education, Zhejiang University, 

Hangzhou 310027, China. 

D. B. Popović is with Faculty of Electrical Engineering, University of 

Belgrade, 11000 Belgrade, Serbia and Center for Sensory-Motor Interaction, 

Aalborg University, 9220, Aalborg, Denmark. 

W. Chen and X. Yang is with the Qiushi Academy for Advanced Studies, 

and the College of Computer Science, Zhejiang University, Hangzhou 310027, 

China. 

compass of the hand.  

There have been many attempts to build devices that replace 

or substitute the hand function to promote the autonomy of 

people with amputation or neurological injuries in recent years, 

and today hand assistive devices (HAD) are becoming the 

reality. These include hand prostheses [1], robot hands 

mounted on manipulation aids (like robot arms on 

wheelchairs), assistive hand-exoskeletons [2] and electrical 

stimulation technology for the training of the grasping by 

individuals with hand dysfunctions [3]. What is still lacking is a 

robust, reliable, and intuitive control signal and interface, 

allowing a large bandwidth (bit rate) communication channel to 

control available assistive systems.  

To this aim human-machine interfaces (HMI) have so far 

been extensively studied for people who, due to the pathology, 

have no voluntary control of their upper limbs or have no limbs 

at all. Cortical signals recorded invasively directly from the 

primary motor cortex or biopotentials recorded through surface 

electroencephalography, have been used to control robotic 

arms, hand orthoses, and prostheses [4]-[5], with the aim of 

restoring the connection from the brain to a paralyzed arm. 

Complementarily for hand amputees, although invasive 

techniques have shown to be viable physiologic means for 

controlling dexterous prostheses, low bit rate, non-invasive 

interfaces such as surface electromyography (EMG) from the 

residual limb have been the most employed solution so far [6]. 

Despite these efforts, the main challenge in the assistive 

engineering/robotics field is still today in the use of control 

signals and extraction of intent, and electrooculography (EOG) 

represents one of the possible solutions.  

EOG is a non-invasive recording technique that allows the 

resting corneoretinal potential of the eye to be recorded through 

electrodes properly positioned. The physiological basis of such 

potential – namely the electrooculogram – is that the cornea is 

electrically positive relative to the back of the eye, and this 

source behaves as if it were a single dipole oriented from the 

retina to the cornea. Since eye movements produce a rotating 

dipole source, accordingly, electrooculograms are an effective 

measure of the horizontal and vertical rotations. While the 

potential had been discovered much earlier (by Emil du 

Bois-Reymond in 1848) and the first pioneering clinical 

application was developed in the 1960’s by Arden et al., [7], the 

use of EOG in the clinical and research laboratory came of age 

with the advent of stable electronic signal conditioning 
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Fig. 1 Natural prehension control system vs. artificial EOG-based substitute. 

The biological grasp is composed of a perceptual phase where the properties 

of the object are visually estimated and the proper affordance (how to grasp 

the object) is selected; this is then executed by the motor system in the second 

phase. In this artificial system, the perceptual phase is replaced by a 

processing algorithm (PA) applied on EOG signals while scanning the target 

object, able to recognize shape (sides length: s and L); such information may 

be used to drive the preshaping phase, hence the grasp of a hand assistive 

device. The orientation (α) estimation was not a part of this study. 

amplifiers and filters. Since the 1980's EOG has been widely 

exploited as a control channel in a number of communication or 

assistive devices for the severely disabled patients [8]-[9]. 

Other eye movement recording methods include infrared 

reflection devices, scleral search coil, and video-oculography; 

advantages and disadvantages of each of these methods are 

detailed in [10]. 

This work tries to bring a new dimension in the control of 

hand assistive devices. The novelty follows motor control 

studies that emphasize the role of vision in the reaching and 

grasping function. In humans the selection of how to grasp (the 

so called affordance) depends not only on the function that has 

to be achieved but also on the estimated properties of the object 

and is the result of a complex set of perceptual to motor 

transformations [11]. Properties like distance and orientation in 

the environment are required to transport the hand in the correct 

orientation, direction and for a particular distance; however, 

other properties like size and shape are necessary to control the 

grip aperture and to select the most appropriate grasp points 

[12]. The action of grasp can hence be roughly divided in a first 

phase where a perceptual (imagined) estimation of the 

properties of the object is derived in order to select the proper 

affordance, which is in turn implemented in the second phase 

by the motor system (action). This analysis of the prehension is 

at the basis of the visuo-motor channel hypothesis proposed by 

Jeannerod [12], and is sketched in the upper part of Fig. 1. 

Based on the primary role played by natural vision in 

reaching and grasping, recently Došen et al., developed an 

artificial vision system based on a web camera and distance 

sensors acting as a substitute for the perceptual element in 

grasping [13]. Their system used the measured distance to the 

target object and computer vision algorithms to estimate the 

size and orientation of the object and to output the 

corresponding affordance commands for the control of 

prehension. More recently they demonstrated the real-time 

feasibility of such system on HADs [14]. 

 Our research takes inspiration from the importance of vision 

in planning movement and merges it with the studies on 

physiologic/neural control, by presenting and demonstrating 

the feasibility of a new application for EOG not yet investigated 

in literature, i.e. the control of prehension of a hand assistive 

device by means of visual features estimation of a target object. 

In particular we hypothesized approximating objects to 

rectangles and processing the vertical and horizontal EOG 

signals while scanning the object, as a method for estimating its 

size, which provides key information to select the grasp 

affordance, hence for grasping (Fig. 1). In fact, the first phase of 

a grasp (i.e. the preshaping), consists in orienting and opening 

the hand so that the object fits comfortably.  

Within this paradigm, an artificial substitute replaces the 

natural perceptual estimation of the properties of an object and 

by recognizing it, selects the correct motor program 

(affordance) (Fig. 1). We directly derive the control signal for 

preshaping from natural vision (i.e. from the scanning of an 

object). The suggested method would rely on user ability and 

since it is based on object observation holds the promise to 

become an intuitive and flexible HMI, once learning by the user 

has taken place.  

In order to prove the concept of such EOG application, firstly, 

ten healthy subjects were enrolled in three preliminary 

experimental tasks for assessing (i) horizontal and (ii) vertical 

resolution and (iii) object recognition. The goal of the first two 

was to identify the sensitivity of the EOG signal by subjects 

while looking at lines with different lengths, in order to infer on 

the minimum recognizable differences between two objects. 

The third experiment was aimed at evaluating –with off-line 

processing- the successful recognition rate of different standing 

objects.  

After these preliminary and necessary steps, the off-line 

algorithms were ported onto a real time system which was 

tested by a group (different from the previous one) composed of 

fifteen healthy subjects. Specifically, using the EOG on-line 

system and a programmable robotic hand (acting as a HAD), 

they performed grasp and release tasks with objects requiring 

four different grasp affordances, within experimental protocols 

aimed to provide insights on the robustness of the concept and 

on short-time training effects. 

This paper presents the following: (i) the concept, (ii) 

processing algorithm for identifying the object visual features, 

(iii) experimental setups, and (iv) the results achieved both in 

off-line and on-line experiments. 

 

II. METHODS 

The prehension control system consists of three main 

modules: the EOG signal acquisition unit, the processing 

algorithm (PA) and the hand assistive device (cf. Fig. 1). 
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Fig. 2 Processing algorithms for object shape and orientation estimation. (a) 

EOG processing block diagram. (b) 30 degrees oriented parallelogram and its 

reconstructed version using EOG signals recorded while border-scanning it in 

(c). The long and short sides (L, s) and angles (α, θ) of the object are estimated 

from the reconstructed shape. (d) VEOG signal with two double-blinks (DB) 

and (e) its differential result. The horizontal lines mark the upper and lower 

thresholds which are used to detect double-blinks; the vertical lines mark 300 

ms after the first DB and 600 ms before the second DB, 

i.e. δενοτε τηε τιµε ωινδοω ιν ωηιχη τηε ΕΟΓ σιγναλ ισ υσαβλε φορ ϖι

συαλ φεατυρεσ εστιµατιον. Τηε οριεντατιον (α) estimation was not a 

part of this study. 

A. EOG Signal Acquisition 

The feasibility of the application was evaluated in 

experimental trials whereby subjects’ EOG were recorded 

while “scanning” (see definition below) different objects or 

lines. Four-channel EOG signals were acquired with the 

Synamps RT amplifier (Neuroscan, USA) using active 

Ag/AgCl electrodes, referenced to an electrode placed on left 

earlobe, and grounded at another electrode placed on right 

earlobe. Two electrodes were placed above and below the right 

eye and two to the left and right of the eyes according to a 

bi-temporal electrode application [9]. EOG signals were 

digitized at a sampling rate of 2048 Hz and stored for off-line 

analysis. 

B. Processing Algorithm 

Since EOG is proportional to the rotational angle of the eye, 

the fixation point can be detected from the recorded signal 

when the distance between eyes and objects is fixed and the 

patterns of potentials can be used to resolve the reverse task, i.e., 

that of describing the gaze trajectory, such that the eye 

following the borders of an object clockwise or 

anticlockwise (here defined border-scan) can be used to 

estimate the object shape. 

This concept is summarized in Fig. 2 (a): differential signals 

from right-left and above-below electrodes form the horizontal 

(HEOG) and vertical (VEOG) EOG channels, respectively. 

These are digitally filtered with a 4
th

 order Butterworth 

low-pass filter (cut-off frequency at 20 Hz) to reduce 

interferences from power-line, high frequency noises and other 

physiological sources (e.g. EMG artefacts) and subsequently 

used to estimate the gaze trajectory when the subject 

border-scans the object. As an example, the shape of a 

parallelogram having a 30 degrees orientation (of the longer 

axis with respect to the horizontal axis of the image plane) [cf. 

Fig. 2 (b)] is described. This example was selected since most 

objects that can be held with one hand (and are used in daily life) 

can be reduced to the form of parallelepipeds, and their 

projection in the 2-dimensions plane (i.e. the vision 

representation) are parallelograms, or even rectangle like. Fig. 

2 (c) shows on an x-y plot (rescaled in millimetres) the HEOG 

versus VEOG channels recorded while anticlockwise scanning 

the parallelogram starting from the lowest point (the bottom 

corner), and keeping head still (a moving head would affect the 

eye gaze). Under these hypotheses, the x-y signal 

representation transforms into a pseudo-parallelogram, in 

which eight key data are of interest: e.g. either the position of 

the four corners (A i.e. the starting point, B, C, D) or the 

equations of the four sides (AB, BC, CD, DA). Focusing on the 

corners, once they are identified, in theory the slope of the side 

AB (or CD) α (and similarly θ) can be computed through the 

trigonometric equation: 

 

AB

AB

HEOGHEOG

VEOGVEOG
tg

−

−
=α

 (1) 

 

where the numerator and denominator of the fraction are the 

horizontal and vertical gaze-shifts. With practical EOG though, 

a better estimation can be obtained mathematically through a 

straight line fitting (least squares fitting) from A to B and 

extracting its slope. After this the long side of the object L and 

similarly the short side s could be theoretically calculated using 

the Pythagorean theorem.  

Nevertheless, as this was a preliminary study, we simplified 

the problem and just considered objects standing on one side, 

(i.e. with an orientation α equal to 90 degrees), and decided to 

approximate them as rectangles (α=90°−θ). Hence, equations 

become easier, and in the case of a rectangle standing on the 

short side (side DA), L and s are: 
 

( )
( ))min()max(
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VEOGVEOGcL

h

v
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−×=
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where cv and ch are vertical and horizontal mapping coefficients 

which are required to transform amplitude of EOG (uV) to 

effective dimensions of the object (mm), respectively (such 

coefficients can be retrieved after an initial calibration with a 

given rectangle at a given distance). Generally, if the starting 

point is different from the bottom corner (e.g. B instead of A), 

or it belongs to one side, or if the x-y signal badly resembles the 

object, the four corners could still be found, and its shape and 

orientation still be retrieved through signal processing (e.g. 

filtering) and simple numerical methods (e.g. best fitting of a 

parameterized parallelogram).  

Within this paradigm, the beginning and end of a border 
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Fig. 3 Experimental set-up. The vertical and horizontal resolution assessment 

tests were carried out with the lines in position P1; the object recognition test 

was performed instead, with the objects in position P2 (eye elevation of 37 

degrees). In both cases the distance was about 71 cm. 

scan can be effectively marked by the user in the vertical EOG 

signal through two successive eye blinks (hereafter double 

blinks, DB), and the HEOG and VEOG traces between two DB 

can be exploited to estimate object visual features as described 

above. In order to detect voluntary eye double blinks, the 

VEOG is differentiated. An example is reported in Fig. 2 (d) 

and (e), showing the VEOG signal and its corresponding 

differential version. Once differentiated, the DC component of 

the signal is cancelled out, and the DB becomes easily 

recognized through a finite state machine (FSM) implementing 

a threshold method: if the differential signal exceeds the upper 

and lower thresholds in a predefined sequence and duration, a 

DB is detected. However, as also depicted in Fig. 2 (e), since 

the VEOG signal is in transient state around the DB, signals 

should be discarded and not used for object estimation for a 

certain time window: pilot experiments demonstrated that 300 

ms after the first and 600 ms before the second DB are suitable 

values, also across subjects. 

Resuming, the shape and orientation of an object can be 

approximately reconstructed by border-scanning it, and by 

preceding and following such scan with a DB. In such paradigm 

the DBs are employed to mark the initial and final instants, 

whereas the VEOG and HEOG signals track the rotational 

angles of the eye, therefore allowing determination of the 

object features. If the workspace is fixed also the dimensions of 

the object may be estimated, as the gaze shifts are related to the 

size of and distance to the object. The reconstructed size and 

orientation of the object can be functionally used to control the 

preshaping phase of a grasp, therefore prehension of a HAD. 

C. Experimental Protocol (Off-line EOG) 

Ten able-bodied young subjects (8 males and 2 females 

whose average age was 29.8 ± 3.9 years old) who claimed to 

have normal or corrected vision were enrolled in this study. 

Nine were naive to EOG, and one (subject no.1) was a 

participant with significant experience in the use of EOG 

systems. Specifically, this participant had put in place the 

experimental set up and for this reason had trained for a period 

quantified in 10 days, 45 minutes each day. One by one, the 

subjects were seated on a chair in front of the target which was 

located 71 cm from the line of their eyes on a desk. This 

distance was chosen as it is coherent with the functional reach 

distance in humans. At the beginning of the experiments, each 

subject briefly trained: he/she was asked to scan by sight, 

calibration rectangles on a PC screen at fixed distance (71 cm), 

anticipated and followed by DBs in order to gain confidence 

with the system and learn how to perform DBs. This 

preliminary procedure was also necessary to adjust the 

thresholds for the DB detection, and lasted for about 5-10 

minutes. After that, three different experiments were carried 

out in a sequence: (i) horizontal and (ii) vertical resolution 

assessment, and (iii) object recognition. Although it is known 

from literature that with humans and primates smooth pursuits 

tracking (i.e. slow shift eye movements) is more efficient in the 

horizontal than in the vertical dimension [15], the aim of the 

first two experiments was to: (i) acquire knowledge on the 

horizontal and vertical sensitivity of the EOG scan using the 

recording system available and simple Equations (2), in order 

to infer on the minimum recognizable differences between two 

objects, and to (ii) further train subjects before performing the 

following test. The latter, aimed at evaluating the successful 

recognition rate of different objects. The experimental setup is 

illustrated in Fig. 3; the first two experiments were carried out 

with the targets (i.e., the lines) in position P1, the last 

experiment with the targets (i.e., the objects) in position P2. It is 

important to note that the experiments were carried out in a 

life-like scenario: (i) no instructions on the speed of the 

eye-scans were given (volunteers could decide based on their 

confidence); (ii) the heads of the participants were free to move 

(although they were asked to keep them fixed); (iii) other 

people were working/moving around in the same room; (iv) 

objects were randomly coloured and shaped; (v) on the desk 

there were other objects, and finally, (vi) no special background 

behind the objects was used.  
 

TABLE I 

LIST OF OBJECTS USED FOR THE OFFLINE EXPERIMENTS 

Object Size (s × L) [mm] Possible grasp 

Cylinder 70 × 120 Cylindrical 

½ liter bottle 60 × 190 Cylindrical 

Felt tip pen 25 × 125 Tripod/lateral 

Seal tape 95 × 50 Spherical 

Small ball 38 × 38 Pinch/Tripod 

 
 

1) Horizontal and vertical resolution assessment 

Subjects were asked to scan by sight -back and forth- 

horizontal lines employing the DB marking method described 

above. Five thin lines drawn on a vertical plane at a (mean) 

distance of 71 cm (position P1 in Fig. 3) from the subject’s right 

eye were tested 10 times each. The length of the five lines was 

100, 105, 110, 115 and 120 mm, therefore the differences 

among them ranged between 5 and 20 mm. The eye rotation 

angles required to scan the lines were in the range of 8-9.5 

degrees. The experiment was subsequently replicated with the 

lines oriented vertically. The length of the lines was estimated 

off-line using Equations (2); the Spearman’s rank correlation 

coefficient was used as the performance metric. Indeed, the 

latter assesses how well the relationship between two variables 
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(in this case effective line lengths and estimated line lengths) 

can be described using a monotonic function. 
 

2) Object recognition 

Maintaining the distances illustrated in Fig. 3 (this time in 

position P2), subjects were asked to scan five common objects 

standing on their bases, having various dimensions (cf. Table I) 

and representing the power, precision and lateral grasps used in 

activities of daily living. All the objects were presented to the 

viewer vertically (orientation of the longer axis). Size 

estimation (L and s) was performed off-line, implementing 

Equations (2) on the stored EOG signals. The mean errors on 

the estimated sides (or axes) for each object were used as 

performance metrics. 

D. On-line Experiments with Physical HAD 

After the preliminary experiments (described above), the 

off-line algorithms were ported onto a real time system which 

was tested on-line by a new group of subjects. Fifteen healthy 

participants (12 male and 3 female, aged 24.7±1.8) took part in 

a set of experiments aimed to evaluate the practical viability 

and real time performance of the system proposed. Specifically, 

using: (i) the EOG electrodes and acquisition system; (ii) a 

personal computer running in real time equations (2) and an 

affordance-selection algorithm; (iii) a “physical” artificial hand 

(in place of a HAD); and (iv) a grasp-triggering system. 

Subjects carried out reach, pick and place tasks. What was 

really important here was to assess the ability of using EOG to 

select the correct affordance, rather than the task itself. 

However, the reach, pick and place task with the robotic hand, 

in fact seeming like a game, helped keep the participants 

focused. 
 

 
Fig. 4 Set up used for the on-line experiments with the physical HAD. (a) 

Participant wearing the orthopedic splint attached to the hand. The red marks on 

the table denote the positions of the workspace. (b) Robotic hand used for the 

real time experiment emulating a hand assistive device. 

 

1) Real-Time Affordance-Selection Algorithm.  

A real-time algorithm for selecting the affordance 

appropriate to an object, was developed based on the work by 

Došen et al., [14]. In particular, the algorithm was capable of 

recognizing two DB, of estimating the sizes (L and s) of an 

object scanned [using Equation (2)], and –based on these– of 

selecting the required preshaping posture for a robotic hand 

according to a reduced version of the IF-THEN rule proposed 

by Došen et al. [14]. The estimated object size was compared to 

the pre-defined threshold values and one out of four preshaping 

postures (cylindrical, lateral, tripod or bi-digital) was selected. 

Specifically, if L was greater than a fixed threshold L* (i.e. long 

object), cylinder or lateral grasp was selected; alternatively (a 

short object), a tri-digit or bi-digit grasp was chosen. If L was 

greater than L* (long object), and if s was greater than s1, a 

cylindrical grasp was selected; otherwise, a lateral grasp. For a 

short object, if s was below s2, a bi-digit grasp was selected, 

alternatively a tri-digit grasp was the choice. The algorithm was 

able to select one of the four affordances and send a command 

to the hand within 1 ms after the second DB. 

2) HAD: Artificial Hand 

The robotic hand employed, was a commercial version of the 

SmartHand [1] (commercialized by Prensilia – Italy), shown in 

Fig. 4(b); this was able to perform the four grasps of interest for 

this study. The hand was fixed to an orthopedic splint, that in 

turn was worn on subjects’ left forearm so that they could move 

it, as shown in Fig. 4(a). Since it was available a robotic hand 

was used, but an assistive hand-exoskeleton could also have 

been used. 

3) Grasp-Triggering System 

The triggering system consisted of a single-channel, 

myoelectric electrode and acquisition apparatus that collected 

surface EMG signals from muscles in the anterior compartment 

of the left forearm, and was able to recognize (wrist) flexion 

contractions with a minimum delay (40 ms), through a simple 

threshold technique. It was used as a means for voluntarily 

closing the fingers, starting from their current preshaping 

posture (selected through the affordance-selection algorithm), 

and for reopening it, to release the object at the end of the task. 

The experimental task is detailed hereafter.  

4) Experimental Protocols (On-line EOG) 

Participants sat on a chair in front of the target object which 

was placed in a specific location within a workspace, that was 

centered [cf. Fig. 4(a)] 71 cm far from their eyes. Eight 

different objects (cf. Table II: two for each affordance allowed 

by the hand), were used as targets, and were presented in a 

random order, in two consecutive blocks for each session (16 

trials). Participants were instructed to operate the EOG system 

on the object (i.e. DB – border-scan – DB), which in turn would 

make the hand preshape in one of the four postures; if the 

preshaping was incorrect, they were allowed to repeat the 

border-scanning procedure until the correct preshaping was 

achieved (visual feedback). Once achieved, the participant 

could physically reach the object, trigger the grasp by means of 

a wrist flexion, pick the object and transport it to a 

home-position for release [cf. red square in Fig. 4(a)].  

Fifteen participants (S1-S15) performed the experiment in 

one single session, with the eight objects placed in the centre of 

the workspace, for a total of 16 trials. To get insights of the 

learning of the procedure five of the participants (S1-S5) 

repeated the session twice within the following two weeks 

(repeated test). In order to evaluate the system robustness, five 

other participants (S6-S10), performed the experiment with 

four objects (O1,O3,O4,O7), each one placed on six different 

positions: i.e. the centre of the workspace, and 5 points 10 cm 

far from it on the front, the back, left, right and above [see red 
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marks in Fig. 4(a)]. This workspace test was done twice for two 

consecutive days (48 trials per subject each day). 

In all cases, subjects were asked to keep their head as still as 

possible during the scanning process, but no physical systems 

were used to block the head. Before the very first session each 

participant, received instructions on how to complete the task 

and was allowed to freely train 10 minutes in order to learn: (i) 

how to perform a correct DB and border scan procedure; (ii) 

how to operate the triggering system to grasp/release objects; 

and (iii) how to operate the artificial hand to functionally grasp 

objects. After such short training subjects were asked to scan a 

standard rectangle (sized 148 mm × 105 mm) to calibrate the 

system, then the experiments started. Since timing was highly 

variable among participants, the number of border-scans 

required to select the correct affordance was used as the on-line 

performance metric.  

 
TABLE II 

LIST OF OBJECTS TARGETED FOR THE ON-LINE EXPERIMENTS 

Object 

ID 
Description Size (s × L) [mm] Supposed grasp 

O1 Shampoo bottle 25 × 126 Lateral  

O2 Felt Tip Pen 13 × 180 Lateral 

O3 ½ litre bottle 56 × 152 Cylindrical 

O4 Tea box 94 × 136 Cylindrical 

O5 Candy box 55 × 55 Tripod 

O6 Small ball 62 × 62 Tripod 

O7 Eye drops bottle 26 × 53 Bi-digital  

O8 Rubber 22 × 33 Bi-digital  

Dimension L: long axis, s: short axis 

 

TABLE III 

HORIZONTAL AND VERTICAL RESOLUTION TEST RESULTS 

  S1* S2 S3 S4 S5 S6 S7 S8 S9 S10 

ρ 0.716 0.681 0.878 0.758 0.865 0.530 0.756 0.729 0.606 0.936 

p < 10-8 < 10-7 < 10-12 < 10-19 < 10-15 < 10-4 < 10-9 < 10-8 < 10-5 < 10-21 

H 

t 1.43 0.97 2.57 1.15 1.03 2.32 2.28 1.21 1.39 1.21 

ρ 0.699 0.563 0.019 0.558 0.359 0.241 0.217 0.107 0.440 0.491 

p < 10-7 < 10-4 0.921 < 10-4 0.01 0.092 0.131 0.406 0.001 < 10-3 

V 

t 1.48 1.23 2.46 1.44 1.38 2.33 1.86 1.35 1.56 1.48 

Legend: H, horizontal resolution test; V, vertical resolution test;  ρ, Spearman’s rank coefficient correlation; p, p-value; t, mean time to execute the line-scan. 

Grey backgrounds highlight those tests for which ρ was not statistically significant (i.e. p > 0.05). The asterisk denotes the experienced participant.  
 

TABLE IV 

MEAN ERRORS ON THE ESTIMATED SIZES DURING OBJECT RECOGNITION TESTS AND MEAN BORDER-SCAN DURATIONS FOR ALL SUBJECTS 

Object 
Object size 

[mm] 

Estimated mean size  

(mean ± st. dev.) [mm] 

H mean err [mm]  

(relative error) 

V mean err [mm] 

(relative error) 

Mean error  

(Euclidean 

distance) [mm]  

Mean 

border-scan 

duration [s] 

Cylinder 70 × 120 70.8±9.6 × 125.3±24.3 0.8 (1.2 %) 5.3 (4.4 %) 5.4  2.94 

½ liter bottle 60 × 190 54.3±7.7 × 184.1±28.0 5.7 (9.5 %) 5.9 (3.1 %) 8.2 2.33 

Felt tip pen 25 × 125 32.7±8.9 × 121.4±21.4 7.7 (30.8 %) 3.6 (29 %) 8.5 2.52 

Seal tape 95 × 50 89.9±12.2 × 72.9±22.6 5.1 (5.4 %) 22.9 (45.8 %) 23.5 2.90 

Small ball 38 × 38 32.2±9.1 × 54.6±21.3 5.8 (15.2 %) 16.6 (43.7 %) 17.6 2.05 
 

 
Fig. 5 Representative EOG signals and reconstructed shapes from subject no. 9 while border-scanning the five experimented objects. The upper row shows HEOG 

and VEOG time plots (vertical and horizontal axes units are millivolts and seconds respectively); the vertical dashed lines indicate 300 ms after the first DB and 600 

ms before the second DB, and within the resulting time window the EOG signal is used for visual features estimation. The lower row demonstrate the reconstructed 

shape of the objects obtained by simply x-y plotting -after rescaling- the corresponding VEOG and HEOG signals. Superimposed on the graphs the grey rectangles 

denote how the processing algorithm estimates the size using Equation 2. 
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III. RESULTS 

A. Off-line EOG Experiments 

The ten subjects enrolled in the preliminary part of this work 

performed 150 border-scans each (5 horizontal and 5 vertical 

lines, 5 objects), for a total of 1500 recordings. The duration of 

each experimental session (each subject) was about 30 minutes 

(from electrodes placement to the end): each of the tests lasted 

around 10 minutes. 
 

1) Horizontal and Vertical Resolution Assessment 

The mean time to perform back and forth a line-scan (within 

the two DB) was subjective but relatively fast: 1.63 seconds on 

the average (i.e. a mean speed of 11 degrees/second). Hence 

experimental results here described are based on realistic 

conditions.  

Table III shows the Spearman’s rank correlation coefficient 

ρ, the p-value and the mean time to perform a back and forth 

line scan t, for each subject involved in the tests. As regards ρ, 

the closer it is to 1, the better effective and estimated lengths 

can be described by a monotonic function, whereas the p-value 

tests whether the observed ρ is significantly different from zero 

(a level of p<0.05 was selected as the threshold for statistical 

significance). Within the tested experimental conditions results 

confirm previous findings (as those in [15]): they are highly 

subjective and as denoted by the correlation coefficients, 

horizontal sensitivity is always better than the vertical one. In 

the horizontal test the best performer (subject no. 10) achieved 

a superlative correlation coefficient of 0.93, whereas the worse 

(subject no. 6) the modest value of 0.53. 
 

2) Object Recognition 

Representative results from the object recognition tests are 

presented in Fig. 5: time plots demonstrate the border scan 

signals resembling the five experimented objects by one of the 

subjects. Signals are those stored during the tests (sampling rate 

of 2048 Hz, after the 4
th

 order digital filter, as described in the 

methods section), with no further smoothening or off-line 

processing. The graphs also depict the representative estimated 

lengths of the short and long axes of the objects. In these cases, 

the reconstructed pseudo-rectangles are somehow neat and the 

original shapes can be correctly estimated also at a glance; 

however, in other cases (not shown) the signals are not as good, 

and may yield to a worse estimation. The graphs in the lower 

row also denote the main drawback of the algorithm used; by 

comparing the EOG-based pseudo-rectangles (black curves) 

with the results of Equation (2) (grey rectangles) it is easy to 

understand that the latter is not able to separate the pure object 

shape from the EOG overshoots caused by the fast movement 

of the eye (especially marked on the VEOG). This results in an 

overestimation of the lengths of the object axis, but since this is 

likely to be a systematic error (depending on the subject), it was 

accounted when converting EOG recording units (from 

millivolts) to effective lengths (millimetres). 
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Fig. 6 Scatter plot in millimetres of the reconstructed horizontal and vertical 

dimensions of the objects, i.e. sides s and L respectively. The ellipses semi-axes 

sizes denote the standard deviation (on vertical and horizontal axes) of each 

sample group. Data from all ten  subjects and five objects is included (500 

samples, 100 for each object). 
 

The scatter plot in Fig. 6 presents on an x-y plane the 

estimated dimensions for each border-scan to all objects by all 

subjects. The data (500 pairs of estimations in total) is 

displayed as a collection of points, each having the value of the 

estimated short side determining the position on the horizontal 

axis and the value of the estimated long side determining the 

position on the vertical axis. Samples related to the same object 

are coloured in the same way and black circles and crosses 

mark the mean estimation and the effective size for each object, 

respectively. The ellipse horizontal and vertical semi-axis 

lengths are sized as the standard deviations of the estimated 

short and long sides respectively, for each object. To shift from 

EOG recording units (volts) to millimetres, each subject’s 

measurement is rescaled using the mean ratio from his/her 

recordings. The graph reveals a clear clustering among the five 

clouds, therefore significant separation among the five 

experimented objects. To confirm this statement a k-nearest 

neighbours (k-nn with k equal to 1) algorithm to recognize the 

five objects was applied on each subject’s data as follows: the 

first three estimation pairs (estimated L and s) for each object 

were used to train the k-nn, whereas the last seven pairs were 

used for evaluation. Results are very good (86.2% on average) 

and range between 97.1% (best object recognition rate, for 

subject no. 9) to 74.3 % (worst result, subject no. 6). If the first 

five estimation pairs for each object are used to train the k-nn 

and the last five are used for evaluation (i.e. a slightly longer 

training procedure), the object recognition rate reach 100% 

success for all subjects. 

Table III resumes the mean size estimations together with the 

mean horizontal, vertical and Euclidean distance errors. 

Coherently with the experimental horizontal and vertical 

resolution results, absolute errors on the horizontal signal are 

generally lower than those on the vertical axis. Only for the 

25x125 mm felt-tip pen the horizontal error is greater than the 

vertical one, and in just two cases the errors (in particular the 

vertical errors) are greater than 10 mm. Such cases refer to 

those objects having shorter long sides (i.e. 38 and 50 mm). 

Table IV also resumes the mean times to perform the 

border-scan for the five objects; these were generally fast, 

ranging between 2.05 (for the small ball) to 2.94 seconds (for 



To appear on IEEE Robotics and Automation Magazine, submitted version: IEEE RAM ID 12-0066 9 

the cylinder).    

B. On-line Experiments with Physical HAD  

Fig. 7 shows the distribution (in percents) of number of scans 

required to achieve correct preshaping, by the fifteen naïve 

participants, after one single session. It shows that overall, 

across subjects and objects, 65% of trials were successfully 

achieved with one border-scan; in 15% of cases two scans were 

required. Hence, around 80% of trials were achieved with one 

or two border scans. We believe this was an interesting result 

for participants naïve to the system. 
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Fig. 7 Distribution of number of border scans required by 15 healthy subjects to 

generate correct grasp affordance, through the EOG on-line system.  
 

Overall, subjects were able to select the proper affordance 

after 1.9±1.9 (mean ± st. deviation) border scans. The high 

standard deviation denotes large variability based on subjective 

performance, and the result is likely to be due to the short 

training. Although not supported by statistics, the training 

curve across the three-sessions/days repeated test (cf. Fig. 8), 

shows a positive trend (p-value = 0.09); with some practice the 

number of scans required diminished (from 2.2±0.8 in 

day1-block 1 to 1.5±0.2 in day3-block 2). The distribution 

across the three days (graphs not shown) demonstrate that the 

percentage of trials successful with one border-scan increased: 

70%, 71%, and 74%, in the three days. 
 

 
Fig. 8 Improvements in performance due to learning. The graph shows the 

number of scans needed to achieve correct preshaping of the hand organized as 

individual trials, blocks of trials, and days.  

 

The results of the workspace tests by five subjects are 

presented in Table V. The Friedman test, demonstrated no 

statistical difference among the 6 positions (p = 0.28) that are at 

the boundaries of a 20x20x10 cm3 volume, but a statistical 

difference among subjects (p = 0.29) and objects (p < 0.001). 

 
TABLE V 

WORKSPACE  (WS) TEST: MEAN SCAN TIMES ± STD 

Object  
WS 

centre 

10cm 

right 

10cm 

back 

10 cm 

left 

10 cm 

front 

10 cm 

top 
Mean 

O1 1.4 1.8 2.4 1.0 1.7 1.3 1.6±0.0 

O3 1.0 1.1 1.0 1.0 1.0 1.0 1.0±0.5 

O5 2.2 2.3 1.5 1.8 2.0 2.5 2.1±0.4 

O7 1.5 1.7 1.0 2.0 1.3 1.8 1.6±0.4 

Mean 1.5 

±0.5 

1.7 

±0.5 

1.5 

±0.7 

1.4 

±0.5 

1.5 

±0.4 

1.7 

±0.7 

 

IV. DISCUSSION 

The off-line data analysis and real time experimental results 

enlightened the potentialities and limitations of the present 

application, here discussed in detail. 

A. Horizontal vs. Vertical Resolution 

These tests show that for subjects with normal or corrected 

vision and no previous training, the patterns of EOG potentials 

can be used to estimate horizontal gaze shifts with significant 

accuracy, but vertical gaze shifts with poorer or insignificant 

accuracy. This is true within the experimented conditions: 

rotation of one degree of freedom at a time (either only vertical 

or only horizontal eye rotation), using Equations (2) to estimate 

the lengths, the rotational angle range of 8-9.5 degrees and 

mean eye speed of 11 degrees/second. 

These outcomes confirm previous findings on the asymmetry 

of horizontal vs. vertical smooth pursuits, which is found at all 

ages in humans and primates [15]-[16]. Collewijn and 

Tamminga attribute the horizontal-vertical asymmetry in adults 

to the fact that most objects that are pursued in daily life move 

in a horizontal plane [15], however, Grönqvist et al. [17] and 

several other studies with infants demonstrate the 

developmental origins of such asymmetry. Besides these 

possible reasons, the vertical pupil movement range is much 

smaller than that of the horizontal range, causing it to be much 

more susceptible to external perturbations such as head 

movements. The combination of these factors may explain the 

larger overshoots of the vertical scans (as shown e.g. in Fig. 5) 

that yielded to low or insignificant values of the Spearman’s 

correlation coefficient. 

B. Object Recognition 

The scatter plot graph and k-nn results demonstrate that the 

proposed 5-class object recognition problem can be solved with 

great success by simply applying Equations (2) to the vertical 

and horizontal EOG signals and thresholding the outputs 

(similarly to [13] and [14]). Of course, a successful recognition 

would also depend on how objects differ in sizes and 

proportions; considering two standard deviations as the 

distance for separating sample clouds related to different 

groups, we could speculate that -in the worst case- objects 

differing 56 mm in the vertical side and 24 mm in the horizontal 
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side could be successfully recognized (cf. Table III). The 

greatest mean errors in the vertical axis were found for those 

objects with shorter longer side (i.e. the 95 × 50 mm seal tape 

and the 38 × 38 mm ball). In such cases the errors are so large 

that the effective size points in the scatter plot (marked with a 

cross in Fig. 8), fallout from the ellipses centred on the mean 

estimation point (marked with circles). The reason yielding to 

such large systematic errors can mostly be attributed to the low 

vertical resolution.  

C. On the Feasibility of the System: On-line Experiments 

The hypotheses for operation of a HAD employing the 

present control paradigm are: (i) no head movements while 

border scanning, (ii) objects shape resembling rectangles, and 

(iii) limited workspace (eye-target distance and eye elevation). 

With the on-line experiments we attempted to get insights on 

how such hypotheses were far from reality. 

The first hypothesis fits into real life practice: while 

observing objects it is not uncommon that we keep our head 

still, and additionally, since the border scan could be completed 

very quickly, the head in the meantime could be considered as 

still (as also shown by the good results achieved in these 

experiments). The results from on-line experiments prove this: 

without constraining the head, subjects soon learnt how to 

operate the system to a good level. A method for eliminating 

head artefact in EOG recordings could be by measuring and 

combining eye movements with head movements. 

The second hypothesis (i.e. objects resemble parallelograms 

or rectangles) is also realistic, since the visual representation of 

most objects of our life that can be held within one hand are 

quite small, and can be approximated to parallelograms or even 

rectangles. If just the short side of an object is required to 

correctly preshape the HAD and grasp it, the effective whole 

shape becomes insignificant. Additionally, it should be noted 

that the non-linearity of EOG signals with eye rotations greater 

than 20-30 degrees [7], should generate incorrect estimations. 

Indeed, objects that can be held in one hand must be smaller 

than the hand aperture size (reasonably below 15 cm), therefore 

will require border-scans with very limited gaze shifts (i.e. 

within the linear range). A further proof comes from the on-line 

experiment outcomes; the selected objects were objects that can 

be found in an everyday life scenario; they had a visual (2-d) 

representation different from a rectangle (e.g. the small and big 

bottles, the ball), however our control system demonstrated 

good operation. Although the number of classified outputs 

during the on-line experiments was limited to four preshaping 

postures, the proposed size-estimation algorithm based on 

Equations (2) is general and theoretically holds the potential to 

recognize more than just four grasp types. 

The third hypothesis (i.e. limited workspace) is the strictest 

one, and cannot be assured in practice. However, since this is a 

trigonometric problem, it influences less the farther the 

distance; i.e. it generates larger errors at closer distances. In 

fact, the perspective causes the eye gaze shifts (∆α) needed to 

observe an object sized s to vary as the arctangent of the ratio 

between s and the distance d. With larger distances, the slope of 

the function ∆α=f(d) tends to zero, and therefore the gaze shift 

variations, ∆α become less sensitive to distance variations. As 

an example, a 5 cm large wineglass distant 20 cm from the eye 

(which is very close to the face) yields to gaze shift variations 

of around 5 % every increasing/decreasing centimetre in 

distance. The sensitivity to distance for the same glass in a more 

realistic workspace, e.g. 70 cm far from eyes, decreases to 

about 1 % and gets even lower the farther the workspace is (but 

it is senseless wanting to grasp an unreachable object). As a 

proof of this, the results from the on-line workspace test, 

demonstrated no statistical differences in HAD operability 

among positions within a 20 × 20 × 10 cm
3
 parallelogram, 

centred 71 cm far from the eyes.  

The on-line control experiments showed that all fifteen 

subjects –although with imperfect results– finished the task 

when they first used the system, after just a short 10-minute 

training. These results enlightened the intuitiveness of the 

system, and demonstrated that the principle of operation can be 

learnt in the order of minutes, unlike other non-invasive HMI 

based e.g. on motor imagery (that require long training 

procedures). Additionally, the short-term learning experiments 

with five healthy subjects over three sessions showed that the 

performance is likely to improve with training. The present 

system also offers potential advantages compared to other non 

physiological and non-invasive control approaches: indeed it is 

more intimate/personal than voice-control systems [18] (a 

command can be issued without other people knowing), and 

less specific compared to HMI with a fixed number of 

commands, like tongue, foot or other keyboard-based control 

systems with a fixed number of keys [19], [20]. 

The objective of this study was to assess the feasibility of a 

new application for EOG in the assistive robotics field, 

potentially promising for those people with severe hand 

dysfunction, e.g. due to spinal cord or brachial plexus injury or 

degenerative neuromuscular diseases. The clinical viability of 

this system on the target population should be assessed on a 

subjective basis. It is worth underlining that all results should 

be assessed with regards to the simple -and practical- 

algorithms used. It is foreseen that more complex algorithms 

(still fast enough for insuring real time applicability of the 

system) should allow for more accurate estimation of the size of 

the objects, and hence finer classification. 
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