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Abstract—Recent powered (or robotic) prosthetic legs indepen-
dently control different joints and time periods of the gait cycle,
resulting in control parameters and switching rules that can be dif-
ficult to tune by clinicians. This challenge might be addressed by
a unifying control model used by recent bipedal robots, in which
virtual constraints define joint patterns as functions of a mono-
tonic variable that continuously represents the gait cycle phase. In
the first application of virtual constraints to amputee locomotion,
this paper derives exact and approximate control laws for a partial
feedback linearization to enforce virtual constraints on a prosthetic
leg. We then encode a human-inspired invariance property called
effective shape into virtual constraints for the stance period. Af-
ter simulating the robustness of the partial feedback linearization
to clinically meaningful conditions, we experimentally implement
this control strategy on a powered transfemoral leg. We report the
results of three amputee subjects walking overground and at vari-
able cadences on a treadmill, demonstrating the clinical viability
of this novel control approach.
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I. INTRODUCTION

AMPUTEE locomotion is slower, less stable, and requires
more metabolic energy than able-bodied locomotion

[1]–[3]. Individuals with lower-limb amputations fall more fre-
quently than able-bodied individuals and often struggle to nav-
igate ramps, hills, and stairs [2]. These challenges can be at-
tributed largely to the use of mechanically passive prosthetic legs
[3], which do not actively respond to perturbations or contribute
positive work, as do the muscles in biological legs. Recent pow-
ered legs could significantly improve mobility and quality of
life for millions of lower limb amputees, but control challenges
currently limit the clinical viability of these devices.

With the addition of sensors and motors, powered prosthetic
legs must continuously make control decisions throughout the
gait cycle; thus, increasing the complexity of these devices. Con-
trol engineers typically handle this complexity by discretizing
the gait cycle into multiple time periods,1 each having its own
separate control model [4]–[7]. The prevailing methodology
also controls each joint independently in multijoint prostheses
[5], [6]. Each control model may enforce desired impedances
(i.e., joint stiffness and viscosity [4], [5]) or track predefined
patterns of joint angles [8], [9], velocities [10], or torques [7],
[11]. These prosthetic legs switch between control models based
on switching rules or estimates of gait cycle phase that rely on
multiple sources of sensory feedback.

This approach to prosthetic leg control has two key chal-
lenges: 1) reliability of the phase estimate for switching control
models and 2) difficulty of tuning control parameters for several
control models to each joint, patient, and task. An error in the
phase estimate can cause the prosthesis to enact the wrong con-
trol model at the wrong time, potentially causing the patient to
fall. Moreover, each control model must be carefully tuned by
a team of clinicians and researchers to work correctly for a par-
ticular patient performing a particular task [6]. Some prosthetic
control systems have five discrete periods of gait with more than
a dozen control parameters per joint per period [5]. Although re-
cent methods attempt to automate the tuning of these parameters
[6], multiple tasks (e.g., walking, standing, and stair climbing)
add up to hundreds of parameters for multijoint prosthetic legs.
The goal is therefore to minimize the number of control switches
and hand-tuned parameters.

1These discrete periods of gait are commonly called “phases,” but we avoid
this nomenclature to avert confusion with our continuous definition of phase.
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This goal could potentially be achieved by parameterizing
a nonlinear control model with a mechanical representation of
the gait cycle phase, which could be continuously measured
by a prosthesis to match the body’s progression through the
cycle. This idea originates from recent work in autonomous
bipedal robots, which can walk, run, and climb stairs using
a control framework known as partial feedback linearization2

[12]. This geometric control approach produces joint torques
to virtually enforce kinematic constraints, which define desired
joint patterns as functions of a mechanical phase variable (e.g.,
hip position). Although experiments with bipedal robots includ-
ing [12]–[16] demonstrate the exceptional performance enabled
by virtual constraints, this control approach has never been ap-
plied to the field of prosthetics. The closest known approach [9]
tracks a prerecorded human ankle trajectory based on a mechan-
ical phase variable, but data-driven patterns may not generalize
to different users, tasks, or joints as easily as symbolic virtual
constraints defined from a minimal set of tunable parameters.
Prosthetic virtual constraints could coordinate multijoint pat-
terns across different periods of gait, measuring a phase vari-
able to match human motion as opposed to methods relying on
feedback from the sound leg [8], [17].

The application of virtual constraints to prosthetics raises
new theoretical challenges related to partial feedback lineariza-
tion with human–machine interaction, such as the presence of
interaction forces and the lack of state feedback from the hu-
man body. We recently derived a linearizing controller for a
prosthetic ankle using only feedback available to sensors on the
prosthesis [18], but this strategy did not include the knee joint for
transfemoral (above-knee) amputees. We extended virtual con-
straints to the knee joint and simulated this coordinated control
strategy in [19]. These simulations motivated pilot experiments
with a powered prosthetic leg in [20], where the prosthesis
was attached to the thigh of an able-bodied subject through a
leg-bypass adapter. These preliminary works did not, however,
demonstrate the clinical viability of the control strategy with
amputee patients.

This paper employs the method of virtual constraints on a
powered prosthetic leg to unify the stance period, coordinate
ankle and knee control, and accommodate clinically meaningful
walking conditions in both simulations and experiments with
transfemoral amputee subjects. As amputees often struggle to
adapt to varying conditions like gait speed and shoe geometry
[2], we employ the invariant property of effective shape (or
rollover shape) as a virtual constraint. An effective shape is
the trajectory of the center of pressure (COP)—the location
of the ground reaction force (GRF) under the foot—mapped
into a moving reference frame attached to the stance leg [21].
From the perspective of the leg, the COP stays on an effective
shape that is invariant over gait speeds [22], heel heights [23],
shoe curvatures [24], and body weights [21], suggesting that a
prosthetic leg could naturally accommodate these conditions by
enforcing the effective shape. We therefore model two effective

2The feedback linearization is called “partial” because only the input–output
dynamics are linearized, whereas the internal dynamics may remain nonlinear.

Fig. 1. Images of transfemoral amputee subject walking on the Vanderbilt
prosthetic leg (designed in [5]) using the proposed virtual constraint strategy.

shapes as virtual constraints that parameterize the stance period
with the heel-to-toe movement of the COP as a phase variable.

We begin with the theory of virtual constraints for a prosthetic
leg in Section II, extending the preliminary works [18], [19] by
defining both exact and approximate feedback linearizations
for general constraint functions before modeling the effective
shapes. In Section III, we model the hybrid system of an am-
putee biped with prosthetic legs controlled by virtual constraints
during stance and joint impedance during swing. Going beyond
the case of exact feedback linearization in [19], the simulations
in Section IV demonstrate the robustness of the virtual con-
straints to variable walking conditions, approximate feedback
linearization, and noisy phase measurements. These simulations
motivate the experimental implementation in Section V, where
we report the results of three transfemoral amputee subjects
walking overground and at variable cadences on a level tread-
mill. All three subjects achieved stable walking (see Fig. 1)
after minimal tuning of a small set of parameters. We discuss
these results and limitations of the study in Section VI, and we
conclude in Section VII.

II. VIRTUAL CONSTRAINTS FOR A PROSTHETIC LEG

We now present a prosthetic control framework that is capable
of unifying certain periods of the gait cycle through the use of
virtual constraints. After deriving both an exact and an approxi-
mate control law for general virtual constraints, we specifically
employ the invariance property of effective shape to 1) unify
the stance period, 2) coordinate multijoint control, and 3) en-
able the prosthesis to accommodate variations in cadence, shoe
geometry, and body mass.

A. Modeling the Prosthesis

The prosthetic leg depicted in Fig. 2 (solid gray) is attached
to the hip of the body, which is shown in dashed black. We first
model the prosthetic leg for our control derivation in this section
and return to the full-biped model in Section III for the purpose
of simulation in Section IV.
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Fig. 2. Kinematic model of transfemoral amputee biped, where the prosthetic
stance leg is shown in solid gray and the body in dashed black. The lengths
of the heel, shank, and thigh segments are labeled �f , �s , and �t , respectively.
The radius of curvature Rf and center of rotation Pf define the rocker foot
geometry. Dorsiflexion/plantarflexion of the stance ankle and extension/flexion
of the stance knee are defined in the positive/negative directions.

1) Dynamics: We model the prosthetic leg as a kinematic
chain with respect to an inertial reference frame attached to
the ground (see Fig. 2). We define a floating coordinate frame
at the prosthetic heel, treating its position coordinates (qx, qz )
as state variables that will later be constrained by a contact
model. The full configuration of the leg in configuration space
Q = R2 × T 3 is given by q = (qx, qz , φ, θa , θk)T , where φ is
the foot orientation with respect to vertical, θa is the ankle
angle, and θk is the knee angle. The state of the dynamical
system is then given by vector x = (qT , q̇T )T ∈ TQ, where
q̇ ∈ R5 contains the joint velocities. The state trajectory evolves
according to a differential equation of the form

M(q)q̈ + N (q, q̇) + A(q)T λ = Bu + J(q)T F (1)

where M ∈ R5×5 is the inertia/mass matrix, N ∈ R5 is a vec-
tor that groups the Coriolis/centrifugal terms and gravitational
forces, A ∈ Rc×5 is the matrix modeling c physical constraints
between the foot and ground, and λ ∈ Rc is the Lagrange mul-
tiplier used to calculate the contact forces.

The external forces on the right-hand side of (1) respectively
comprise actuator torques and interaction forces with the body.
Ankle and knee actuation from torque input u ∈ R2 is mapped
into the leg’s coordinate system by B = (02×3 , I2×2)T ∈ R5×2 .
The interaction force F = (Fx, Fz ,My )T ∈ R3 at the socket—
the connection between the prosthesis and body at the hip in
Fig. 2—comprises two linear forces and a moment in the sagittal
plane [25], which can be measured by a three-axis load cell at
the socket. Force vector F acts at the end point of the leg’s
kinematic chain and is mapped to joint torques/forces by the
body Jacobian matrix J(q) ∈ R3×5 , which we model using the
standard procedure in [26].

2) Stance Period: During the prosthesis stance period, we
must model the physical forces associated with contact between
the prosthetic foot and ground. These contact forces prevent
the foot from slipping and falling through the ground, which

constitute at least two physical constraints on dynamics (1).
Therefore, foot geometry is commonly modeled (e.g., [12]–
[15], [27]) as a vector holonomic constraint

a(q) = 0 (2)

where a : Q → Rc for c ≥ 2. In Section III, we will employ the
rocker feet seen in Fig. 2, but other geometries such as flat feet
[28], [29] could similarly be modeled in this framework.

Given contact constraint a(q) = 0, we follow the method
in [26] to compute the constraint matrix A = ∇q a and
Lagrange multiplier λ = ̂λ + ˜λu + λ̄F , where

̂λ = W (Ȧq̇ − AM−1N )

˜λ = WAM−1B, λ̄ = WAM−1JT (3)

for W = (AM−1AT )−1 . These terms enter into dynamics (1)
only during the stance period of the prosthetic leg.

3) Swing Period: During the swing period of the prosthesis,
the prosthetic foot is not in contact with the ground, so no contact
constraints are invoked in the prosthesis dynamics, i.e., λ = 0
in (1). Although the prosthesis is still modeled with respect to
its heel point, the interaction force F in prosthesis dynamics (1)
suspends the prosthetic leg from the body’s hip.

B. Definition of a Virtual Constraint

Although defined in a similar manner to physical/contact
constraints, virtual constraints are enforced by actuator torques
rather than external physical forces. The vast majority of vir-
tual constraints used in bipedal robots are holonomic [12]–[16];
therefore, we translate these design principles into our prosthetic
framework by considering virtual holonomic constraints

h(q) = 0 (4)

where h : Q → R2 for an actuated knee and ankle, i.e., one
virtual constraint per actuated degree-of-freedom (DOF).

Remark 1: Meaningful virtual constraints, i.e., output func-
tions h(q), can be defined in a variety of ways. Reviewing pre-
vious work in bipedal robotics (e.g., [12], [13], [15]), virtual
constraints can be used to control the actuated joints specified
by h0(q) = (θa , θk)T to a desired trajectory hd(Θ(q)) ∈ T 2

as a function of a monotonic quantity Θ(q) ∈ R. This quan-
tity, known as the phase variable or timing variable, pro-
vides a unique representation of the gait cycle phase to drive
forward the desired pattern in a time-invariant manner. In
this case, the output function of (4) would be defined by
h(q) = h0(q) − hd(Θ(q)). The desired pattern hd can be de-
fined first as a function of time (via boundary-constrained opti-
mization) and then reparameterized into a function of Θ(q) [12].
We will see that h(q) can also be defined directly from geomet-
ric relationships found in human walking without specifying a
desired angular trajectory.

Given desired virtual constraints (4), the goal of a virtual
constraint controller is to drive output function h(q) to zero.
Therefore, the control system output

y := h(q) (5)

corresponds to tracking error from the desired constraint (4).
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Some torque control methods are better suited than others at
driving this output to zero. If we do not start with a desired joint
pattern hd (see Remark 1), it is not always possible to solve a vir-
tual constraint (4) for a unique joint trajectory as needed for joint
impedance methods [4]–[7]. Bipedal robots typically enforce
virtual constraints using partial (i.e., input–output) feedback
linearization [12], which has appealing theoretical properties
including exponential convergence [30], reduced-order stability
analysis [12], and robustness to model errors [13]. However,
the application of this method to prosthetics presents unique
challenges with human–machine interaction.

C. Partial Feedback Linearization of the Prosthesis

We cannot expect to have either a model of the human or
sensors at intact joints in a clinically viable system. The con-
troller should then rely only on the prosthesis model, i.e., terms
in (1), and feedback available to onboard sensors, i.e., state
x = (qT , q̇T )T and interaction force F . The lack of full state
feedback from the biped system presents a challenge not previ-
ously encountered in implementations of partial feedback lin-
earization on bipedal robots [13]. Therefore, in this section, we
show that measurements of interaction force F will allow us to
achieve similar results on a prosthetic leg.

As previously stated, our goal is to define a feedback control
law for input u that drives output y to zero in dynamics (1). An
input–output linearizing control law is derived in [19] using Lie
derivative notation from [30], but for clarity here, we derive an
equivalent control law in terms of the matrices in (1). We start
by examining the first-order output dynamics ẏ = (∇qh)q̇. As
the control input u does not appear in these dynamics, output
y has relative degree greater than one (cf. [30]) and another
time-derivative is needed to expose the control input. Letting
H := ∇qh, the second-order output dynamics are

ÿ = Ḣq̇ + Hq̈

= Ḣq̇ + HM−1(−N − AT λ + Bu + JT F )

= Ḣq̇ − HM−1(N + AT
̂λ) + HM−1(B − AT

˜λ)u

+ HM−1(JT − AT λ̄)F. (6)

The output function y = h(q) can be chosen such that the 2 × 2
decoupling matrix

D(q) := HM−1(B − AT
˜λ)

= HM−1(I − AT WAM−1)B (7)

is nonsingular over feasible walking configurations, which can
be verified numerically. We can then solve for the control law
that inverts the output dynamics (6):

ulinz := D−1 [−Ḣq̇ + HM−1(N + AT
̂λ)

−HM−1(JT − AT λ̄)F + upd ]. (8)

Defining a proportional-derivative (PD) input

upd := −Kpy − Kd ẏ (9)

with positive-definite Kp ,Kd ∈ R2×2 , control law (8) renders
the output dynamics (6) linear and exponentially stable

ÿ = upd = −Kpy − Kd ẏ. (10)

Remark 2: The linear output dynamics (10) imply y(t) → 0
exponentially fast as t → ∞ for y(0) �= 0. The feedback
linearization provides y ≡ 0 in steady state, implying that
the surface Z = {x | y = 0, ẏ = 0} is invariant3 under the
closed-loop continuous dynamics. This allows system (1) to
be restricted to lower dimensional zero dynamics on surface Z ,
where holonomic virtual constraints provide greater dimension-
ality reduction than nonholonomic constraints [12], [30]. The
holonomic outputs characterize the two actuated DOFs, whereas
the zero dynamics represent the unactuated DOFs (qx, qz , φ)
coupled with the human through interaction force F . These
lower dimensional dynamics determine the continuous behavior
of the full system (1) through the virtual constraints. Classical
results in [30] can be invoked to show that the full system is
stable if the zero dynamics are stable under control law (8).
However, walking has discontinuous impact events (see Section
III), so surface Z may not be hybrid invariant, i.e., y = 0 im-
mediately before heel strike may not imply y = 0 immediately
after heel strike. We will see in Section IV that the PD terms in
(10) quickly correct errors from impacts, by which we approxi-
mate hybrid zero dynamics to provide stability of the full hybrid
system (cf. [12]). We will exploit the existence of passive gaits
down shallow slopes [31] to stabilize the hybrid zero dynamics
(and therefore the full hybrid system) in the simulations of
Section IV. Similarly, the human wearing the prosthesis will
help stabilize the hybrid zero dynamics in the experiments of
Section V.

The zero dynamics onZ are defined by the virtual constraints,
independent of the control law enforcing them (and other meth-
ods exist, e.g., finite-time control [12], inverse dynamics [29],
and control Lyapunov functions [32]). We now present a simpler
control law that approximates this partial feedback linearization
for our experimental implementation.

D. Approximation of the Partial Feedback Linearization

Although this partial feedback linearization has many bene-
ficial properties, control law (8) can be difficult to implement
in practice. Its dependence on interaction force F requires a
three-axis load cell at the socket. This control law also requires
an accurate dynamical model (1) of the prosthesis, which could
present a barrier to clinical viability when components like pros-
thetic feet are interchangeable.

We can avoid these potential limitations, while still leveraging
the theoretical results of Remark 2, by approximately enforcing
virtual constraints with the linear part (9) of control law (8). With
sufficiently large PD gains in matrices Kp ,Kd , the linear terms
will dominate the nonlinear terms in (8). We, therefore, approxi-
mate the exact control law ulinz using only the output PD control
law upd . Virtual constraints are typically implemented in this
approximate manner on experimental biped robots [12]–[15].

3Any state trajectory initialized on an invariant surface of a continuous system
will remain on the surface for all time [30].
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Fig. 3. Diagrams of the ankle–foot (left) and knee–ankle–foot (right) effective
shapes. The COP moves along each shape (dashed curve) in the shank-based or
thigh-based coordinate frame (solid axes).

Remark 3: If the decoupling matrix D(q) is positive-definite
and the PD gains are sufficiently large, the outputs will remain
close to zero in the output dynamics (6) under control law (9).
The prosthesis dynamics (1) will then be close to the zero dy-
namics in Remark 2, providing a lower dimensional system for
the human-in-the-loop to stabilize. Alternatively, the human in-
teraction force in (6) may help enforce the virtual constraints,
allowing the use of small gains in controller (9), as we will see
in Section V.

Although control law (9) is linear in the outputs, these out-
puts are typically nonlinear functions of configuration q, e.g., the
phase variable Θ(q). In the next section, we will choose these
nonlinear functions such that their dependence on a phase vari-
able allows a prosthetic leg to perform phase-specific behaviors
that mimic able-bodied human gait.

E. Choosing the Virtual Constraints

The goal of this paper is to implement virtual constraints that
unify the stance period, coordinate ankle and knee control, and
accommodate clinically meaningful conditions on a powered
prosthetic leg. For this purpose, we employ a geometric relation-
ship of the stance leg that is invariant across walking conditions
including gait speed, shoe geometry, and body weight [21]. This
invariance property, which is known as the effective shape in the
prosthetics field, is often used as a metric for aligning passive
prostheses [33]. We define the effective shape and show that
it can be treated as a virtual holonomic constraint with certain
assumptions about the stance contact model—the swing period
is considered later.

1) Definition of Effective Shape: Reviewing the preliminary
works [19] and [20], an effective shape characterizes how the
stance leg joints move as the COP travels from heel to toe.
Able-bodied humans have effective shapes specific to activities
such as walking [21], stationary swaying [34], and stair climbing
[35], and each shape can be characterized by the curvature of the
COP trajectory with respect to a reference frame attached to the
stance leg. In particular, the ankle–foot (AF) effective shape is
the COP trajectory mapped into a shank-based reference frame
(axes x̂s , ẑs on the left side of Fig. 3, and the knee-ankle–

foot (KAF) effective shape is the COP trajectory mapped into a
thigh-based reference frame (axes x̂t , ẑt in Fig. 3, right). These
leg-based frames share an origin at the ankle, but ẑs is attached
to the knee and ẑt to the hip.

These two shapes can be modeled by the distance between
the COP and a point Pi = (Xi, Zi)T attached to the respective
leg-based reference frame

||Pi − COP|| = Ri, i ∈ {s, t} (11)

where the radius of curvature Ri is approximately constant
within standing or walking tasks [34]. These two effective
shapes provide two virtual constraints to control two joints—the
ankle and knee of the prosthesis.

2) Effective Shape as a Virtual Holonomic Constraint: In
order to employ these effective shapes in the linearizing con-
trol law (8), (11) must be expressed as a holonomic constraint
in the coordinates of our leg model. This requires the COP to
be a function of the configuration q, despite the fact that the
COP is usually expressed as a function of forces [36]. We can
treat the COP as a position variable if we assume rolling point
contact between the foot and ground, which can be achieved
with a rocker foot as depicted in Fig. 2. This modeling assump-
tion originates from works showing that rocker feet are suit-
able substitutes for compliant feet, which are difficult to model,
when simulating human-like dynamic walking [27], [37] and
when designing prosthetic feet [38]. This contact model is de-
fined in Section III-B and Appendix A, and its limitations are
discussed in Section IV-E.

We can now express the vector from the COP to the center
of rotation Pi as a function PCOP

i (q), i ∈ {s, t}, as defined in
Appendix B. Equation (11) given in model then coordinates by
the kinematic constraint hi(q) = 0 for

hi(q) := Ri − norm(PCOP
i (q)), i ∈ {s, t}. (12)

This function is the output of a virtual constraint, which corre-
sponds to the distance from the desired effective shape. Hence,
the vector output of the AF and KAF virtual constraints is de-
fined as y := h(x) = (hs(x), ht(x))T .

Remark 4: These effective shapes are virtually enforced on a
prosthetic leg by driving output y to zero, which can be achieved
exactly using control law (8) or approximately using (9). Vir-
tual constraints (12) depend on the COP, which moves mono-
tonically from heel to toe during steady walking. This choice
of constraints should then synchronize the knee and ankle pat-
terns through their mutual dependence on the COP as a phase
variable, i.e., Θ(q) = qx in Remark 1.

As an effective shape is not defined for the swing leg (which
has no COP), we will instead control the swing period with the
clinically familiar concept of joint impedance—the stiffness and
viscosity of a joint—which is the current standard for controlling
powered prosthetic limbs [5]–[7]. We will use joint PD control
for this purpose in Sections III–V. Our feedback linearization
approach could be used during swing with another choice of
virtual constraints, but in this paper, we focus on the stance
period as a starting point for the first application of this theory
to a prosthetic leg.
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Now that we have derived an exact and an approximate
partial feedback linearization for clinically motivated virtual
constraints, we should validate the feasibility and analyze the
robustness of this prosthetic control strategy before experimen-
tally implementing it for amputee subjects. We will perform this
analysis in simulation, requiring us to model a biped to interact
with the prosthetic limb as would an amputee.

III. MODELING AN AMPUTEE BIPED FOR SIMULATION

In this section, we model the amputee biped of Fig. 2 for the
purpose of simulating a prosthetic leg under virtual constraint
control in Section IV. These simulations require us to consider
the coupled dynamics of the body and the prosthesis for a total
of eight DOFs. The extended configuration vector is denoted
by qe = (qT , θh , θsa , θsk)T ∈ Q× T 3 , where θh is the body’s
hip angle, θsa is the swing ankle angle, and θsk is the swing
knee angle. For simplicity, we assume symmetry in the full
biped (i.e., a bilateral transfemoral amputee with two identical
prosthetic legs), where each prosthesis uses the same control
strategy. The prosthetic legs do not communicate, and therefore,
each leg interacts with the model’s hip and opposing leg through
interaction forces in (1) as it would with a human body, whether
or not the opposing leg is prosthetic.

We model a passive human hip in order to 1) test the inherent
stability of the prosthesis controller without active human assis-
tance and 2) avoid the impractical task of modeling a realistic
human controller. For this purpose, we exploit the existence of
passive walking gaits, which arise on declined surfaces when
the potential energy converted into kinetic energy during each
step replenishes the energy dissipated at impacts [28], [31]. This
behavior reflects certain characteristics of human gait, such as
ballistic swing motion [39] and energetic efficiency down slopes
[40]. We therefore model a downhill slope condition to power
the hip in these simulations.

A. Control Strategy

Although the control laws in Section II could employ virtual
constraints for both the stance and swing periods, this paper
focuses on the use of effective shape as a virtual constraint for
its invariance properties during stance. As no effective shape is
known for the swing leg [21], we instead use the standard method
of joint PD control (often called impedance control) during
swing [5]. This passive method can enable ballistic motion of the
swing leg as in human walking [39]. Because the prosthesis does
not bear the user’s body weight during the swing period, this
model-free method can accurately drive the prosthetic joints to
flexion angles needed to achieve toe clearance, which is critical
to amputee locomotion.

Although the human hip joint is powered by gravity in our
simulation, we add a spring damper to the joint for consistent
step placement. Therefore, the vector of control torques for the
entire biped (prostheses and amputee) is given by

τe = (BT , 02×3)T ust + (01×5 , 1, 01×2)T uh

+(02×6 , I2×2)T usw

where ust = ulinz(x) or ust = upd(x), and the hip input uh ∈ R
and the swing prosthesis inputs in usw = (usa , usk)T ∈ R2 have
the form

ui := −kpi(θi − θeq
i ) − kdi θ̇i (13)

where kpi , kdi , and θeq
i , respectively, correspond to the stiffness,

viscosity, and equilibrium angle of joint i ∈ {h, sa, sk}. We
saturate the prosthesis torques at 80 N·m to simulate the torque
limit of the experimental prosthesis in Section V.

B. Hybrid Dynamics

Bipedal locomotion involves both continuous and discrete
dynamics, which constitute a hybrid dynamical system. Here,
we summarize these hybrid dynamics from [19]. The biped’s
continuous dynamics are governed by a differential equation of
the form (1). Noting that the derivation for control law (8) in
Section II did not depend on a specific choice of foot contact
constraints, we must first define a contact model.

To model the biped’s contact constraints in the context of
Section II-A2), we choose constant-curvature rocker feet to ap-
proximate the deformation of human feet during walking [27],
[37]. The associated contact constraints (2) are modeled in Ap-
pendix A, where aroll

1 (q) constrains coordinates qx, qz to an arc
of radius Rf , and aroll

2 (q) constrains φ to be perpendicular to the
arc. The foot does not extend behind the heel link in Fig. 2, so
depending on orientation φ the rocker may not be in contact with
the ground at heel strike (qx = qz = 0). In this case, the biped
rotates about the heel with constraints defined by aheel

1 (q) := qx ,
aheel

2 (q) := qz , which fix the heel position to the ground. These
constraints model physical contact, whereas the effective shapes
in Section II-E serve as virtual constraints for joint control.

Given this contact model, the constraint terms A and λ

in dynamics (1) are computed according to the definitions in
Section II-A2). We denote the heel contact matrix as Aheel =
∇q a

heel or Aeheel = ∇qe a
heel and the rolling contact matrix

as Aroll = ∇q a
roll or Ae roll = ∇qe a

roll . The model switches
from heel contact to rolling contact when the sole intersects the
ground, i.e., when aroll

2 (q) = 0.
One step period then consists of a sequence of heel contact

dynamics, a foot-slap impact event, rolling contact dynamics,
and a ground-strike impact event with impact map Δe :

Me q̈e + Ne + Ae
T
heelλe = τe , if aroll

2 (qe) �= 0

q̇e
+ = (I −X (Ae rollX )−1Ae roll)q̇e

−, if aroll
2 (qe) = 0

Me q̈e + Ne + Ae
T
rollλe = τe , if pz

γ (qe) �= 0

(q+
e , q̇e

+) = Δe(q−e , q̇e
−), if pz

γ (qe) = 0

which then returns to the beginning of the sequence for the next
step [19]. Note that X = M−1

e Ae
T
roll , superscripts +/− respec-

tively denote post/preimpact, and pz
γ (qe) ∈ R is the height of

the swing foot heel above ground with slope angle γ. Extended
terms are defined as in Section II with respect to the extended
configuration qe . After imposing the contact constraints, the
full-biped model has one degree of underactuation: foot orien-
tation φ, which is constrained to a one-to-one relationship with
the COP during rolling contact.
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TABLE I
SIMULATION PARAMETERS

Parameter Variable Value

Hip mass m h 31.73 [kg]
Thigh mass m t 9.45 [kg]
Thigh moment of inertia It 0.1995 [kg·m2 ]
Thigh/shank length �t , �s 0.428 [m]
Shank mass m s 4.05 [kg]
Shank moment of inertia Is 0.0369 [kg·m2 ]
Heel height �f 0.07 [m]
Foot mass m f 1 [kg]
Foot radius R f 0.3(�s + �t ) [m]
Slope angle γ 1.72 [◦]
KAF/AF effective radius R t , R s 0.41(�s + �t ) [m]
KAF/AF center of rotation X t , X s 0 [m]
KAF/AF proportional gain (linz) Kp t , Kp s 2 · mass [N]
KAF/AF derivative gain (linz) Kd t , Kd s 1.4

√

Kp s [N·s]
KAF/AF proportional gain (pd) Kp t , Kp s 400 · mass [N]
KAF/AF derivative gain (pd) Kd t , Kd s 10

√

Kp s [N·s]
Swing hip equilibrium angle θe q

h −22.9 [◦]
Swing hip proportional gain kp h 0.106 [N·m/◦]
Swing hip derivative gain kd h 0.043 [N·m·s/◦]
Swing knee equilibrium angle θe q

k 17.2 [◦]
Swing knee proportional gain kp k 0.212 [N·m/◦]
Swing knee derivative gain kd k 0.036 [N·m·s/◦]
Swing ankle equilibrium angle θe q

a 0 [◦]
Swing ankle proportional gain kp a 2.12 [N·m/◦]
Swing ankle derivative gain kd a 0.270 [N·m·s/◦]

C. Stability of Hybrid Limit Cycles

This hybrid dynamical system can be analyzed for stability
as in [28]. Letting xe = (qT

e , q̇e
T )T be the state vector for the

full biped, walking gaits are cyclic and correspond to solution
curves xe(t) of the hybrid system such that xe(t) = xe(t + T )
for all t ≥ 0 and some minimal T > 0. These solutions define
isolated orbits in state space known as hybrid limit cycles, which
correspond to equilibria of the Poincaré map P : G → G, where
G = {xe | pz

γ (qe) = 0} is the switching surface indicating heel
strike. This return map represents a hybrid system as a discrete
system between impact events, sending state xe j ∈ G ahead one
step to xe j+1 = P (xe j ). A periodic solution xe(t) then has a
fixed point x∗

e = P (x∗
e).

We verify stability about a fixed point x∗
e by approximating

the linearized map ∇xe P (x∗
e) through a perturbation analysis

[28], [31]. The discrete system is locally exponentially stable
(LES) if the eigenvalues of ∇xe P (x∗

e) are strictly within the unit
circle, by which we infer that the hybrid limit cycle is LES [28].
We now use this hybrid model to simulate and analyze our pros-
thesis control strategy, which will later inform the experiments
presented in Section V.

IV. SIMULATION AND ROBUSTNESS RESULTS

In this section, we simulate the prosthesis with the amputee
model to validate the virtual constraint approach and analyze its
robustness to variable walking conditions, approximate feed-
back linearization, and noisy measurements of the phase vari-
able. To guide the experiments in Section V, we set the model
parameters in Table I to average values of adult males [41]
with trunk masses grouped at the hip. We characterized foot

compliance using the physical foot radius Rf = 0.3�L for leg
length �L = �s + �t as suggested in [37]. The human hip relied
on passive dynamics from a decline of γ = 1.72◦.

The effective shape parameters defined in Section II-E were
chosen according to previous human subject studies [21]. During
walking both the AF and KAF effective shapes have a constant
radius of curvature (circular arcs in Fig. 3), and these radii
are approximately the same: Rt = Rs = 0.41�L . The centers
of rotation are in front of the leg for level-ground walking, but
on downhill slopes these shapes are more plantarflexed [21],
e.g., Xs = Xt = 0. The constraint defined by (12) is satisfied
when the COP passes through the respective leg-based axis,
and therefore, the ẑi-component of Pi is necessarily given by
Zi =

√

R2
i − X2

i − �f , for i ∈ {s, t}.
Due to these anatomical normalizations of the effective shape

parameters [21], only four PD gains needed to be tuned for
the entire stance period. We chose Kps = Kpt = 2 N/kg and
Kds = Kdt = 1.4

√

Kps to achieve a desired damping ratio in
the linearized output dynamics (10), where

Kp =
(

Kps 0
0 Kpt

)

, Kd =
(

Kds 0
0 Kdt

)

. (14)

During the prosthesis swing period, the impedance controller
(13) facilitated toe clearance by driving the ankle to its neutral
position and the knee to a flexion angle. Other impedance pa-
rameters in Table I were manually tuned—replacing this method
with virtual constraints is left to future work.

A. Ideal Case of Exact Partial Feedback Linearization

We first report the stable walking gaits achieved with the
exact control law (8) under ideal conditions. The biped model
was simulated in MATLAB as described in [19]. Once the biped
converged to a steady-state gait, we numerically verified that the
associated fixed point was LES as in Section III-C.

The hybrid limit cycle is shown in Fig. 4. The model main-
tained heel contact for 274 ms followed by rolling contact for
572 ms (see the left side of Fig. 5 ), during which the COP moved
monotonically from heel to toe as a phase variable. The heel-to-
rolling transition caused a discontinuity in the joint velocities,
but controller (8) attenuated the outputs during both contact con-
ditions without saturating the joint torques (see Fig. 5). Each
ground-strike event introduced output error, i.e., the effective
shapes were not hybrid invariant (see Remark 2), but the outputs
remained small and converged to zero within each step period.
This result implies that the controller enforced both effective
shapes (see Fig. 4, right) and created approximate hybrid zero
dynamics (see Remark 2) that were stabilized by the passive
dynamics of the body. A supplemental video of the simulation
is available for download.

B. Robustness to Approximate Partial Feedback Linearization

Although the exact partial feedback linearization produces
ideal results, control law (8) can be difficult to implement in
practice. We introduced the output PD control law (9) as a clin-
ically viable alternative, which we wish to show approximates
the results of the exact control law.
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Fig. 4. Simulated steady-state gait using the exact control law: angular phase portrait (left), angular trajectories (center), and effective shapes (right). Note that
φ, θa , and θk correspond to the stance prosthesis, θh corresponds to the body, and θsa and θsk correspond to the swing prosthesis. The right figure corresponds to
the COP trajectory in a shank-based (AF shape) or thigh-based reference frame (KAF shape), where circles indicate contralateral heel strike.

Fig. 5. Simulated trajectories of COP (left), outputs (center), and stance leg torques (right) under exact control law (linz), approximate control law (pd), and
approximate control law with phase variable noise (pd+n). The foot initially contacts the ground 5 mm in front of the heel to avoid a singularity in the contact
model. The outputs correspond to Euclidean distance from the desired effective shape. The torques saturate at ±80 N·m, corresponding to ±1.32 N·m/kg.

Fig. 6. Maximum absolute eigenvalue (MAE) over slope angle (left), foot radius (center), and body weight (right) during steady-state walking with both control
laws. A MAE value below one indicates a LES steady-state gait at the x-axis condition.

Using the large PD gains in Table I, control law (9) similarly
produced a LES walking gait. On the right side of Fig. 5 we see
that this controller produced larger control torques than did the
exact control law, likely because the PD controller used substan-
tially larger gains (but still did not saturate the actuators). These
torques dorsiflexed the ankle more and flexed the knee later
compared with Fig. 4 (center) from the exact control law. The
PD controller allowed output tracking error during mid-stance
but corrected most of the error by heel strike (see the center
part of Fig. 5), resulting in nearly constant shape curvature. Al-
though the exact controller performed better, the PD controller
reasonably approximated the desired feedback linearization.

We were unable to find stable gaits with PD controller
(9) using small gains like those previously used in the exact
controller. The exact linearizing controller (8) directly cancels
the nonlinear terms in the output dynamics (6), whereas the PD
controller (9) must rely on large gains or assistance from the
human interaction force to compensate for these nonlinearities

(Remark 3). The passive human hip in these simulations cannot
actively compensate for instabilities arising from tracking error
in the output dynamics, but we will see in the experiments
of Section V that human subjects help stabilize the gait when
small gains are used. We now show that the approximate
feedback linearization retains similar robustness properties to
the exact feedback linearization.

C. Robustness to Variable Walking Conditions

Here, we report the robustness of both the exact and approx-
imate feedback linearizations across the clinically meaningful
conditions of gait speed, ground slope, shoe geometry, and body
weight. We separately varied each condition starting from the
parameters in Table I, computing the eigenvalues of the steady-
state gait across conditions to determine the effect on stability
[28], where a maximum absolute eigenvalue (MAE) below one
in Fig. 6 implied LES.
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Fig. 7. Step velocity over slope for steady-state gait under both control laws.

As we relied on downhill passive dynamics to model the
human part of the biped, we could not directly command the
amputee model to walk at different speeds. However, walking
speed typically has a one-to-one relationship with ground slope
in passive dynamic walking [28], [31], i.e., steeper slopes re-
sult in faster speeds. We therefore varied the slope—without
changing controller parameters—to examine robustness to vari-
ations in both walking speed and terrain. We see in Fig. 7 that
gait speed changed linearly with ground slope, where the pros-
thesis accommodated speeds between 0.68 and 1.06 m/s using
both control laws. Despite the use of a passive hip, the am-
putee model achieved stable walking on slopes very close to
level ground (see Fig. 6, left), with the closest being a 0.57◦ de-
cline. The biped could not walk stably on level ground without
active contribution from the human body, but modeling a hip
controller was beyond the scope of this paper. We will instead
rely on the amputee experiments of Section V to demonstrate
variable cadences on level ground.

We studied invariance across shoe geometries by varying the
foot radius Rf as suggested by [24]. The stable eigenvalues in
Fig. 6 (center) imply some robustness to different foot models,
where the exact control law was able to accommodate a slightly
greater range than the approximate control law. These simula-
tions suggest that an experimental implementation of the control
strategy may be robust to different prosthetic feet or shoes worn
by amputees [23], [24].

We increased the human hip mass mh in Fig. 6 (right) to sim-
ulate a subject carrying heavy weights as suggested by [21]. The
new weight was unknown to the prosthetic leg except through
measurements of the interaction force in the exact control law
(8). The prosthesis accommodated up to 24.5 kg, in addition to
the original body mass (almost a twofold increase), using the ex-
act control law and up to 14.5 kg using the approximate control
law, which has no interaction force measurement. Notably the
body weight had little effect on how well the exact control law
tracked the outputs (see Fig. 8). These simulations demonstrate
that both the exact and approximate linearizations can enforce
the invariant property of effective shape to accommodate varia-
tions in experimental conditions.

D. Robustness to Phase Variable Noise and Delay

As our phase variable, the COP, will be calculated from force
measurements [20], this variable will have more noise than feed-
back from joint encoders in our experiments. We, therefore,

Fig. 8. Output trajectories under extreme weight with the exact control law.

examined the robustness of the PD controller (9) to measure-
ment noise in the phase variable qx . Based on a signal analysis
of our load cells, we added Gaussian white noise with 2-mm
root-mean-squared error to simulate the noisy signal. We then
applied a fourth-order Butterworth filter (10-Hz low-pass cut-
off) to simulate realistic phase delay from a digital filter. We
represented the COP velocity q̇x with the numerical derivative
of this filtered signal.

Using the same PD gains in Table I, the biped walked in a sim-
ilar manner to the nonnoisy PD condition. The noisy COP signal
caused larger peak torques (saturating the actuators) during mid
stance, resulting in a brief nonmonotonic period of the true COP
and greater output tracking error (see Fig. 5). The random noise
prevented the biped from converging to a period-one hybrid
limit cycle, but its ability to take 50+ steps with little deviation
suggests the presence of a stable attractor [31]. This simula-
tion demonstrates the robustness of the approximate controller
to noise and phase delay, further motivating our experimental
implementation in Section V.

E. Discussion of Model Limitations

These simulations demonstrate the feasibility and robustness
of our control approach despite the limitations of the walking
model, particularly with regard to the contact assumptions. We
assumed point contact during stance in order to model the ef-
fective shape as a holonomic virtual constraint (4). Although
rolling point contact may not be a realistic assumption for most
prosthetic feet (exceptions include the Shape&Roll foot [38]
and running “blades” [2]), rocker foot models approximate the
compliant motion of the human ankle–foot complex [21], [37].
We saw that our control strategy can accommodate a range of
foot curvatures and nonideal COP behavior, suggesting some
robustness to the contact model. Rocker feet are often modeled
without ankle joints, but recent work shows that human gait is
better predicted by rocker feet with ankles [27], which may al-
low enforcement of the effective shapes defined from different
leg segments [21]. The experiments of Section V will demon-
strate that our holonomic treatment of effective shape has no
impact on the approximate controller (9).

Although the rolling contact model provided a monotonic
COP trajectory in the exact case, the heel-contact condition
resulted in a static COP at the start of each step. This fixed
contact condition could be avoided in future work by modeling
the foot with an arc behind the heel as in [15] and [27]. We will
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Fig. 9. Photo (left) and schematic diagram (right) of Vanderbilt leg attached
to custom instrumented foot.

see in our experiments that control law (9) produces a strictly
monotonic COP trajectory when a human is in the loop, i.e., the
COP acts as the phase variable of the virtual constraints.

Other limitations associated with our simplified walking
model include the instantaneous double-support phase and
downhill slope condition. The assumption of instantaneous im-
pact (common in dynamic walking models [12]–[16], [28], [31])
allows the use of an algebraic impact map instead of differen-
tial equations associated with compliant ground contact. We
modeled downhill walking to avoid the need for an active con-
troller at the human hip, demonstrating the inherent stability of
the prosthesis controller without human help. We now verify
these simulation results, while avoiding the model limitations,
by performing experiments with amputee subjects.

V. TRANSFEMORAL AMPUTEE EXPERIMENTS

In this section, we experimentally test the clinical viability and
robustness of our control strategy with transfemoral amputee
subjects walking both overground and at variable cadences on a
treadmill. Because of experimental time constraints, we did not
examine variations in foot geometry or body weight other than
differences across subjects.

A. Control Implementation

We implemented the approximate controller (9) on the
Vanderbilt leg (see Fig. 9), a powered knee–ankle prosthesis
developed at Vanderbilt University (see [5] for design details).
This device had encoders to measure joint angles/velocities and
two brushless dc actuators to provide control of the knee and
ankle joints. The leg did not have sensors to measure the foot
orientation or COP, requiring us to design and integrate the
custom instrumented foot in Fig. 10 (see [20]). An onboard mi-
crocontroller computed4 the desired control torques, which were

4Note that the microcontroller was preprogrammed with an impedance control
law of the form (13), so during the stance period an off-board computer sent
the microcontroller impedance commands that inverted the impedance loop and
inserted desired torques from virtual constraint control law (9).

Fig. 10. Computer-aided design of custom instrumented foot: an adapter with
two 6-axis load cells (model: Mini45, ATI Industrial Automation, Apex, NC)
mounted onto a prosthetic foot plate, as described in [20].

converted into open-loop current inputs to each actuator—these
control loops are depicted in Fig. 11.

The integrated leg-and-foot system provided the feedback
needed to implement the output PD control law (9) as in Fig. 11.
The control gains in Table II were held constant during the stance
period. We introduced a new gain Kdts as the bottom-left term
of matrix Kd in (14) to facilitate knee flexion as the ankle
plantarflexed for forward propulsion during late stance.

The prosthesis employed control law (9) during the stance
period, as detected from the vertical force measured by the
load cells. When the load dropped below a threshold of about
10% body weight, the prosthesis switched to the impedance-
based swing controller (13) from Section III-A. However, the
experimental leg had unmodeled joint friction, preventing the
ballistic swing motion we observed in our simulations. The
knee would not passively extend during late swing as needed
to accept the body’s weight in the next step. To compensate
for friction and provide clinicians with the ability to prescribe
angles for both early knee flexion and late knee extension, we
employed two periods of impedance control during swing as
commonly done in both passive [3] and powered prostheses [5],
[6]. We programmed the control system to switch from one set
of impedance parameters (“Swing 1” in Table II) to another set
(“Swing 2” in Table II) when the knee flexion angle reached a
threshold of about 70◦.

For the sake of brevity, we defer the details regarding tran-
sition rules of the state machine to [6]. We now present the
experiments conducted with this prosthetic control system.

B. Experimental Protocol

Three transfemoral amputee subjects were recruited to par-
ticipate in an experimental study of this prosthetic control sys-
tem during level-ground walking. All subjects provided written
informed consent in accordance with Northwestern University
IRB protocol STU00069039. Inclusion criteria required subjects
to be aged between 18 to 70 (to reduce the risk of injury), lighter
than 113 kg (to meet the load specifications of the prosthesis),
and taller than 1.7 m (to allow the subject to walk on the pros-
thesis without using a lift on the sound foot). Each subject was
more than 2 months postindependent ambulation with a unilat-
eral amputation above the knee. During walking, trials subjects
were provided either a ceiling-mounted harness or handrails to
mitigate the risk of injury from falls. A certified prosthetist and
an occupational therapist provided clinical support during the
experiments and ensured the comfort and safety of the subjects.
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Fig. 11. Joint-level and motor-level control loops used to experimentally implement virtual constraint control law (9) on the Vanderbilt leg. The joint-level loop
computes control law (9) to determine the desired torques, which are produced by the motor-level loop through open-loop current control of the brushless dc
motors. Note that the approximate controller (9) does not require measurements of the socket interaction forces as does the exact control law (8).

At the beginning of each experiment, three anatomical
measurements were taken from the subject: body mass [kg],
height [m], and residual thigh length �t [m] between the pros-
thetic knee joint and the subject’s hip joint. These three mea-
surements alone allowed us to set all the control parame-
ters needed for the subject to begin walking on the prosthe-
sis. We set the shape parameters for level-ground walking us-
ing the height-normalized5 formulas Rs = Rt = 0.158 · height
and Xs = Xt = −0.02 · height based on able-bodied observa-
tions in [22]. We then set Zs =

√

R2
s − X2

s − �f and Zt =
√

R2
t − X2

t − �f by definition of effective shape. All subjects
started with the same weight-normalized PD gains in Table II
for stance control law (9). Even though simulations with this
controller in Section IV-B suggested the use of large PD gains,
we adopted small gains from the exact controller (8) in Sec-
tion IV-A to ensure the safety of our subjects. The impedance
parameters used for swing control (see Table II) were obtained
from the impedance-only control strategy in [6].

After loading the subject’s parameters into the prosthetic con-
trol system, the subject was instructed to walk back and forth
along a short-level path between parallel bars (2–3 prosthe-
sis steps per pass). All three subjects were able to walk with
the initial set of normalized parameters, but 15–45 min were
dedicated to fine-tuning the parameters (and in some cases the
transition rules of the state machine [6]) to maximize the sub-
ject’s comfort. For example, TF01 desired more ankle power,
so we increased the ankle gain to Kps = 1.1 · mass. The two
other subjects requested slightly less ankle power, for which
we lowered the ankle gains. The final gains employed by the
three subjects were quite similar, with only minor adjustments
made from the initial parameters at the request of the subject or
clinical staff.

Once the subjects became comfortable with the prosthetic
control system, they were instructed to make ten consecutive

5According to [22] and [21], this height-normalized formula for Rs and Rt
produces approximately the same values as the formula Rs = Rt = 0.41�L in
Section IV. The height-normalized formula was used in these experiments as
subjects likely know their height rather than their leg length.

TABLE II
INITIAL EXPERIMENTAL PARAMETERS

Parameter Variable Value

Prosthesis shank length �s 0.406 [m]
Prosthesis heel height �f 0.10 [m]
Prosthesis foot radius R f 0.3(�s + �t ) [m]
Slope angle γ 0 [◦]
KAF/AF effective radius R t , R s 0.158 · height [m]
KAF/AF center of rotation X t , X s −0.02 · height [m]
KAF proportional gain Kp t 2 · mass [N]
AF proportional gain Kp s 1 · mass [N]
KAF derivative gain Kd t 1.1

√

Kp t [N·s]
AF derivative gain Kd s 1.1

√

Kp s [N·s]
KAF coupled AF-derivative gain Kd t s −0.5Kd t [N·s]
Swing 1 knee equilibrium angle θe q 1

k 80 [◦]
Swing 1 knee proportional gain kp k 1 0.65 [N·m/◦]
Swing 1 knee derivative gain kd k 1 0.04 [N·m·s/◦]
Swing 1 ankle equilibrium angle θe q 1

a 0 [◦]
Swing 1 ankle proportional gain kp a 1 2.5 [N·m/◦]
Swing 1 ankle derivative gain kd a 1 0.25 [N·m·s/◦]
Swing 2 knee equilibrium angle θe q 2

k 0 [◦]
Swing 2 knee proportional gain kp k 2 0.7 [N·m/◦]
Swing 2 knee derivative gain kd k 2 0.08 [N·m·s/◦]
Swing 2 ankle equilibrium angle θe q 2

a 0 [◦]
Swing 2 ankle proportional gain kp a 2 2 [N·m/◦]
Swing 2 ankle derivative gain kd a 2 0.15 [N·m·s/◦]

passes along an extended walkway (four to five prosthesis steps
per pass; see Fig. 1) without using the parallel bars unless needed
for stability. After completing the overground trials, subjects
were instructed to walk on a level treadmill at three different
speeds (within the range simulated in Fig. 7) to test the in-
variance of the controller. We first allowed the subjects to find
a comfortable self-selected speed on the treadmill, which was
between 0.8 and 0.9 m/s for all subjects. We recorded 20 pros-
thesis steps at this “normal” speed. We then increased the speed
by 0.134 m/s and recorded 20 prosthesis steps at the resulting
“fast” speed. Finally, we decreased the self-selected speed by
0.134 m/s and recorded 20 prosthesis steps at this “slow” speed.
No changes to control law (9) were made between speeds. A
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supplemental video of the treadmill and overground experiments
is available for download.

C. Experimental Results

We analyzed the experimental data by first applying a second-
order Butterworth filter (12-Hz low-pass cutoff) and segmenting
steps based on the vertical load measured by the foot. For over-
ground trials, we discarded turn-around steps at the end of each
walkway pass, as well as the step immediately following this
transition. The timeline for each step was normalized between
initial heel strike (0% stance) and toe off (100% stance) before
averaging across steps.

Focusing on the stance period of the prosthesis—when the
virtual constraint controller was employed—Fig. 12 shows the
mean data for 20 overground steps by TF02. We see in Fig. 12(a)
that the COP moved monotonically from heel to toe, implying
that it served as the phase variable of the virtual constraints as
intended. The outputs of the virtual constraints stayed in a small
neighborhood about zero [see Fig. 12(b)], demonstrating that
the clinically viable controller (9) reasonably approximated the
theoretical controller (8) to enforce the virtual constraints. Our
choice of effective shape as the virtual constraints resulted in the
ankle and knee patterns progressing as a function of the COP
as seen in Fig. 13. Note that the joint patterns look different
over the phase variable than over time [see Fig. 12(c) and (d)]
because the COP did not increase linearly with respect to time,
i.e., the phase domain in which control law (9) operated was a
warped representation of the time domain [42].

We did not observe any meaningful differences between the
overground and treadmill conditions besides reduced variance in
the treadmill data. The phase portraits of the three subjects dur-
ing the treadmill condition (see Fig. 14) suggest the existence
of a stable limit cycle. As predicted by our simulations, the
controller maintained invariant effective shapes across the three
treadmill speeds (see Fig. 15), resembling able-bodied behavior
reported in [22]. The maximum speed reached by the subject
pool was 1.03 m/s (TF01), which is notably fast for a trans-
femoral amputee. We see in Fig. 16 that this subject achieved
a natural vertical GRF profile with the prosthesis, including an
initial hump during early-stance loading and a final hump at
late-stance pushoff. This second hump, which is indicative of
active propulsion, cannot be achieved with most transfemoral
prostheses [2].

Analysis of the prosthetic joint kinematics and kinetics re-
veals that the virtual constraint controller produced joint be-
havior that was close to normal. The ankle angle trajectory in
Fig. 12(c) follows the same trends as Winter’s able-bodied data
[36], starting with a period of controlled plantarflexion as the
foot progressed from heel-strike to foot-flat. Subsequently as the
leg rotated over the foot, the ankle dorsiflexed until a peak of
about 13◦ was reached at about 70% of stance. The movement
then reversed as the ankle actively plantarflexed, which we see
in the torque estimated from the motor current in Fig. 12(e).
At this point, the controller provided a powered push-off [see
Fig. 12(g)], thus contributing actively to the energetics of walk-
ing. The ankle did not reach the physiologically appropriate

peak torque as its actuator saturated at 80 N·m [see Fig. 12(e)].
Note that the differences between the experimental torques here
and the simulated torques in Section IV can be attributed to
inaccuracies in the contact model (see Section IV-E) and the
downhill slope condition used in the simulations, requiring dif-
ferent values for shape parameters Xs , Xt , Zs , and Zt in the
prosthesis controller.

Although the prosthesis controller provided knee flexion dur-
ing early stance in the simulations of Section IV, we did not ob-
serve this natural behavior in our experiments [see Fig. 12(d)].
All subjects intentionally locked the knee while loading body
weight on the leg, which most prosthesis users do to ensure the
knee does not buckle [2]. The knee torque plot of Fig. 12(f) does
not show a subsequent extensor moment as in Winter’s data, but
examination of the prosthetic knee angle shows that the joint
was against the hard stop at 4◦, which provided an unmeasured
extensor moment. Late-stance knee flexion was close to natural
and in synergy with ankle push-off, allowing the transfer of pos-
itive propulsive energy to the user. In fact, the total mechanical
work done by the prosthetic leg during stance (normalized by the
mass of the subject and prosthesis) was positive for two of the
three subjects: 0.0817 J/kg for TF16, 0.0436 J/kg for TF01, and
−0.0541 J/kg for TF02, compared with 0.109 J/kg in Winter’s
able-bodied data. We suspect that the prosthesis did negative net
work for TF02 because of his use of the handrails (which may
have dissipated energy) and less ankle pushoff (at his request).

VI. DISCUSSION

Our control strategy produced close-to-normal walking pat-
terns for transfemoral amputee subjects using normalized ef-
fective shape parameters from the literature. The simulations
of Section IV verified the robustness of the virtual constraint
approach to experimental conditions, and by approximating the
desired partial feedback linearization we appeared to achieve
stability in our experiments. We observed convergence to a
periodic orbit—known as a hybrid limit cycle—in the phase
portraits of Fig. 14, suggesting that the controller enabled a
steady-state gait pattern for the amputee subjects. Given that the
outputs remained in a small neighborhood about zero, control
law (9) created approximate hybrid zero dynamics that were
stabilized by the human-in-the-loop, demonstrating successful
human–machine interaction in the context of virtual constraints.
In fact, most subjects did not use the handrails to maintain gait
stability with the experimental prosthesis.

A. Strengths of the Approach

This paper shows that knee and ankle control during stance
can be coordinated by one simple objective: maintaining a con-
stant curvature in the effective shapes. Coordination and syn-
chrony between leg joints (e.g., through biarticular muscles) are
important to energetic efficiency [43] and robustness [19], but
coordinated control is uncommon in current multijoint prosthe-
ses. Control law (9) coordinated knee control with the ankle joint
to enforce the KAF effective shape, which explicitly depends
on the ankle angle (see Appendix B). Knee and ankle patterns
were also synchronized by their dependence on the same phase
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Fig. 12. Prosthesis kinematics/kinetics from TF02 overground trial compared with human data (dashed red) from [36]. Mean values of 20 prosthesis steps are
shown in solid blue, and error bars (±1 standard deviation) are indicated by a shaded region. The COP (a), ankle and knee outputs (b), ankle and knee angles
(c) and (d), estimated ankle and knee torques (e) and (f), and estimated ankle and knee powers (g) and (h) are shown over percentage of stance period, i.e.,
normalized time. Note that the prosthesis torques are estimated from the open-loop motor current (and do not account for extensor moments from the knee hard
stop), and these torque estimates are used to approximate the joint powers. All torques and powers are normalized by the total mass of the subject and prosthesis.

variable (Remark 4). One subject claimed to notice the two
joints working in unison.

By relying on meaningful parameters for clinicians, the pro-
posed control approach could potentially improve the clinical
viability of powered prosthetic legs. The effective radii Rs = Rt
and centers Xs = Xt are defined by simple fractions of the
user’s height [22], preventing the need for hand-tuning. We also
demonstrated that the five nonanatomical parameters Kps , Kpt ,
Kds , Kdt , and Kdts can be normalized by body mass as a

starting point for walking on the prosthesis. These are the only
hand-tuned parameters for stance, whereas existing approaches
have more hand-tuned parameters for this period (e.g., 18 for
impedance control with three stance phases [5] or more with
Hill-type muscle models [7]). By using one control model dur-
ing stance, we also eliminated two control switches and their
hand-tuned rules compared with [5], [7]. However, future ran-
domized clinical studies are needed to compare the performance
of these different control methods.
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Fig. 13. Prosthetic ankle angle (left) and knee angle (right) as a function of COP during TF02 overground trial. Mean values of 20 prosthesis steps are shown by
a solid blue curve, ±1 standard deviation of the COP by horizontal red bars, and ±1 standard deviation of the joint angle by vertical blue bars.

Fig. 14. Prosthetic phase portrait (joint angles versus velocities) over 20 gait cycles for self-selected treadmill condition of subjects TF01 (left), TF02 (center),
and TF03 (right), compared with mean able-bodied (AB) data from [36]. Note that the able-bodied data does not necessarily match each amputee subject’s weight
or speed. The prosthetic joint trajectories appear to converge to a periodic orbit—known as a limit cycle—as the subject approached steady state. We suspect that
TF03, whose weight was at the upper bound of our inclusion criteria, experienced greater variability because of more frequent actuator saturation.

Fig. 15. Prosthetic effective shapes at variable cadences from TF01 treadmill
trial (averaged across 20 steps for each cadence), compared with able-bodied
shapes from overground walking at normal cadence reported in [22]. End of
stance is indicated by a circle. The prosthetic effective shapes appear to be
invariant across cadences as observed in able-bodied studies [22]. A “hook”
occurs during double support in both the prosthetic and able-bodied shapes.

The invariance of the effective shape across conditions such
as walking speed [22], heel height [23], shoe curvature [24], and
body weight [21] suggests that this choice of virtual constraint
could make prosthetic legs more adaptable than conventional
prostheses, which cause discomfort and instability as these con-
ditions vary. Our treadmill experiments verified the simulations
showing that our control system adjusts to variable walking
speeds by enforcing the effective shapes. Although the AF
effective shape can also be achieved with the passive
Shape&Roll foot [38], this below-knee device cannot regulate
the KAF effective shape. Moreover, this passive prosthesis can

Fig. 16. Vertical GRF measured from instrumented prosthetic foot during
TF01 fast treadmill trial, compared with Winter’s data measured from a force
plate during overground walking [36]. The profiles are scaled vertically to
compensate for differences in task and measurement technique. Mean values
of 20 prosthesis steps are shown in solid blue, and error bars (±1 standard
deviation) are indicated by a shaded region. Note the double-hump in the force
profile—one during early-stance loading and one during late-stance pushoff.

only be tuned to one task at a time, whereas humans employ ef-
fective shapes unique to different tasks. For example, the shape
curvature changes substantially between walking and station-
ary standing [34], and upstairs climbing requires a completely
different geometry [35] with positive mechanical work. For this
purpose, virtual constraints can be defined with nonconstant cur-
vature in (12), where the effective shapes associated with stairs
may be the most difficult to model [35]. Our control method
could implement virtual constraints for any effective shape, by
which a powered prosthesis could perform a wide variety of
tasks.

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on April 20,2023 at 13:29:08 UTC from IEEE Xplore.  Restrictions apply. 



GREGG et al.: VIRTUAL CONSTRAINT CONTROL OF A POWERED PROSTHETIC LEG: FROM SIMULATION TO EXPERIMENTS 1469

We did not explicitly design an ankle push-off period into
the control strategy, but enforcing the effective shape as a vir-
tual constraint provided a period of power generation as the
COP approached the toe. A positive feedback loop arose when
COP movement caused a plantarflexive ankle torque, which in
turn caused the COP to move further forward. During early
stance, this positive feedback loop was counteracted by a nega-
tive feedback loop involving the moment arm from shear forces.
As forces are transferred down the leg from the socket, subjects
were able to influence these feedback loops and consequently
their progression through the step. We believe this allowed sub-
jects to walk at their preferred speed overground and accommo-
date variable speeds on the treadmill. Positive force feedback
has been observed during late stance in able-bodied gait [44],
but this biomimetic behavior was only previously reproduced in
a prosthesis using muscle reflex models [7]. Although we did not
tune our control system to maximize positive work, the energy
production we observed was likely associated with this positive
feedback. This feature in a prosthetic leg might prevent com-
pensatory work at the hip [3] and allow lower-limb amputees
to expend normal levels of energy when walking [2]. However,
this positive feedback loop should be disabled during stationary
standing, as COP drift toward the toe could cause unintended
ankle pushoff.

B. Limitations of the Study

The use of approximate feedback linearization resulted in
a few discrepancies during mid-late stance. Excessive ankle
dorsiflexion in Fig. 12(c) was associated with tracking error
from the desired effective shapes, which grew during mid-late
stance in both the simulations (see Fig. 5) and experiments [see
Fig. 12(b)]. We suspect that the approximate controller could
not compensate for stronger nonlinearities during this period of
gait, especially in the presence of ankle actuator saturation [see
Fig. 12(e)] and small PD gains. We employed small gains for
the safety of our subjects, who may have helped virtual con-
straint enforcement through the socket interaction forces, which
enter into the output dynamics (6). Future work could compen-
sate for nonlinearities by using larger PD gains during mid-late
stance (via phase-based gain scheduling), simultaneous linear
control methods [45], or the exact feedback linearization of
Section II-C. Performance could be further improved with se-
ries elastic actuation [46], which can provide closed-loop torque
control and larger peak torques.

The prosthetic foot used in these experiments violated our
model’s point-contact assumption (the COP was not dependent
on configuration alone as assumed in Section II-E), implying
that the effective shape was not truly holonomic. Our experi-
ments successfully employed these nonholonomic constraints,
e.g., output functions of the form h(q, q̇), in the approximate
control law (9), demonstrating some robustness to unmodeled
dynamics. The exact control law (8) could also be reformulated
for nonholonomic constraints as in [29], resulting in lower order
output dynamics and higher order zero dynamics. However, the
vast majority of bipedal robots [12]–[16] use holonomic virtual
constraints for lower dimensional stability analysis (Remark 2),

motivating our holonomic treatment in this paper. We employed
the effective shape as a starting point for this research, but future
work could find better choices of virtual constraints for use in
the general control framework of Section II.

For example, we could model nonconstant curvature into the
effective shape during the double-support period to better mimic
able-bodied gait (see Fig. 15 and [21]). For simplicity, we con-
tinued using the constant-curvature virtual constraints (12) as
the prosthesis entered double support with the intact leg. We see
in Fig. 15 that the approximate controller (9) provided compli-
ance during this period to resemble able-bodied effective shapes,
but the stance-to-swing transition (when the most KAF tracking
error occurred) was a source of criticism from the subjects. A
more general model of effective shape with nonconstant curva-
ture in (11) could potentially be used in the future to explicitly
enforce the appropriate shape during double support. Replac-
ing the joint impedance controller of the swing period with a
minimum-jerk control strategy [47] may also help the stance-
to-swing transition. Alternatively, a definition of effective shape
for the swing period would allow the use of virtual constraints,
resulting in a unified swing period to further reduce the number
of control switches and hand-tuned parameters. This develop-
ment may require a new phase variable that is measurable from
the prosthesis during swing (see the initial work in [48]). Only
after these promising directions are investigated, the virtual con-
straint approach will be mature enough for clinical comparison
with state-of-the-art impedance control methods [4]–[6].

VII. CONCLUSION

These simulations and experiments demonstrate that the the-
ory of virtual constraints could provide a clinically viable solu-
tion for unified control of powered prosthetic legs. In particular,
our stance control strategy produced biomimetic, robust, and
coordinated ankle–knee movement on a prosthetic leg used by
amputee subjects. The controller was able to operate at vari-
able cadences without changes to control parameters due to the
invariance of the effective shape, which also holds over shoe
geometries and body weights [21].

Our simulations suggest that the proposed control approach
can also accommodate inclines, motivating future experiments
with ramps and stairs. More demanding tasks like running may
require the exact feedback linearization in Section II-C to pre-
vent output tracking error, necessitating system identification
of the intrinsic dynamics of the prosthetic leg. Our control
approach could also be integrated with a neural interface (e.g.,
using electromyography from residual muscles [49]) to allow
the user to subconsciously switch between virtual constraints
when anticipating a task change.

The significance of effective shape begs the question as to
whether human locomotion might employ a phase variable [42],
[48]. Phase-based virtual constraints could also be applied to
powered exoskeletons (e.g., [11]), motivating future investiga-
tion of hybrid zero dynamics for wearable robots. With further
development the proposed control concepts have the potential
to improve mobility and quality of life for individuals after am-
putation, stroke, or spinal cord injury.
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APPENDIX A
CONTACT CONSTRAINTS

As a rolling contact point has zero velocity at any instant [25],
we simplify model-based calculations by treating this contact
point (the COP) as stationary and modeling the kinematic chain
with respect to an inertial frame defined at the COP. This as-
sumption physically corresponds to rolling on an ideal treadmill,
which can approximate the curvature of human foot compliance,
i.e., the relative motion between the COP and heel, in a similar
manner to rolling overground. We model the foot as an arc of
radius Rf going through the heel (qx, qz ) and the COP. The vec-
tor from the COP to the center of rotation Pf is defined normal
to the ground and constrained by ||Pf − COP|| = Rf , yielding
equation aroll

1 (q) = 0. We also constrain the foot orientation φ
so the heel is perpendicular to the foot arc (see Fig. 2), yielding
equation aroll

2 (q) = 0.

APPENDIX B
VIRTUAL CONSTRAINTS

The AF effective shape is the distance constraint (11) be-
tween the COP and the center of rotation Ps in the shank-based
reference frame on the left side of Fig. 3. In model coordinates
q defined with respect to the COP, Ps is given by the function

PCOP
s (q) = (qx, qz )T + �f (− sin(φ), cos(φ))T + S(φ + θa)Ps

where S is the standard 2 × 2 rotation matrix parameterized by
angle φ + θa . Similarly, the KAF effective shape is the distance
constraint (11) between the COP and the center of rotation Pt
in a thigh-based reference frame (see the right side of Fig. 3).
The point Pt is given in model coordinates by the function

PCOP
t (q) = (qx, qz )T + �f (− sin(φ), cos(φ))T + S(ρ)Pt

where rotation matrix S is parameterized by angle

ρ = φ + arctan
(

�s sin(θa) + �t sin(θa + θk)
�s cos(θa) + �t cos(θa + θk)

)

.

Finally, these functions define the virtual constraints by (12).
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